Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Maxent pipeline: some docs, bug fix, defaults and simplified create background function #110

Merged
merged 12 commits into from
Nov 14, 2023
Merged
27 changes: 21 additions & 6 deletions pipelines/SDM/SDM_maxEnt.json
Original file line number Diff line number Diff line change
Expand Up @@ -366,7 +366,6 @@
"data": {
"type": "text[]",
"value": [
"L",
"LQ",
"LQHP"
]
Expand All @@ -384,8 +383,7 @@
"type": "float[]",
"value": [
0.5,
1,
2
1
]
}
},
Expand Down Expand Up @@ -763,7 +761,8 @@
"random",
"inclusion_buffer",
"weighted_raster",
"unweighted_raster"
"unweighted_raster",
"thickening"
],
"example": "random"
},
Expand Down Expand Up @@ -866,14 +865,18 @@
"type": "text[]",
"example": [
"chelsa-clim|bio1",
"chelsa-clim|bio2"
"chelsa-clim|bio7",
"chelsa-clim|bio12",
"earthenv_topography|elevation_median",
"earthenv_landcover|class_3",
"earthenv_landcover|class_12"
]
},
"data>loadFromStac.yml@119|spatial_res": {
"description": "Integer, spatial resolution of the rasters",
"label": "spatial resolution",
"type": "int",
"example": 1000
"example": 5000
},
"data>loadFromStac.yml@119|mask": {
"description": "Shapefile, used to mask the output rasters",
Expand All @@ -896,5 +899,17 @@
1
]
}
},
"metadata": {
"name": "Maxent SDM pipeline",
"description": "A pipeline to produce species distribution models using Maxent",
"author": [
{
"name": "Sarah Valentin",
frousseu marked this conversation as resolved.
Show resolved Hide resolved
"identifier": "https://orcid.org/0000-0002-9028-681X"
}
],
"license": null,
"external_link": null
}
}
12 changes: 6 additions & 6 deletions scripts/SDM/runMaxent.R
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ print("Inputs : ")
print(input)


presence_background <- read.table(file = input$presence_background, sep = '\t', header = TRUE)
presence_background <- read.table(file = input$presence_background, sep = '\t', header = TRUE, check.names = FALSE)
predictors <- terra::rast(unlist(input$predictors))
mod_tuning <- run_maxent(presence_background,
with_raster = F, # can be set to F to speed up
Expand All @@ -52,7 +52,7 @@ mod_tuning <- run_maxent(presence_background,
res_tuning <- mod_tuning@results
tuned_param <- select_param(res_tuning, method = input$method_select_params, list = T)

predictors <- raster::stack(predictors)
#predictors <- raster::stack(predictors)

sdms <- predict_maxent(presence_background,
algorithm = "maxent.jar",
Expand All @@ -73,17 +73,17 @@ names(sdm_pred) <- "prediction"
sdm_runs <- sdms[["pred_runs"]]

pred.output <- file.path(outputFolder, "sdm_pred.tif")
runs.output <- paste0(outputFolder,"/sdm_runs_", 1:nlayers(sdm_runs), ".tif")
runs.output <- paste0(outputFolder,"/sdm_runs_", 1:nlyr(sdm_runs), ".tif")
#runs.output <- file.path(outputFolder, "sdm_runs.tif")

sdm_pred<-project(rast(sdm_pred),crs(input$proj)) ##Temporary fix while maxent transitions to terra
sdm_pred<-project(sdm_pred,crs(input$proj)) ##Temporary fix while maxent transitions to terra
terra::writeRaster(x = sdm_pred,
filename = pred.output,
filetype = "COG",
wopt= list(gdal=c("COMPRESS=DEFLATE")),
overwrite = TRUE)
for (i in 1:nlayers(sdm_runs)){
thisrun<-project(rast(sdm_runs[[i]]),crs(input$proj)) ##Temporary fix while maxent transitions to terra
for (i in 1:nlyr(sdm_runs)){
thisrun<-project(sdm_runs[[i]],crs(input$proj)) ##Temporary fix while maxent transitions to terra
terra::writeRaster(x = thisrun,
filename = file.path(outputFolder, paste0("/sdm_runs_", i, ".tif")),
filetype = "COG",
Expand Down
30 changes: 18 additions & 12 deletions scripts/SDM/runMaxentFunc.R
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,8 @@ run_maxent <- function(presence.bg, with_raster = F,
parallelType = "doParallel"
) {

presence <- presence.bg |> dplyr::filter(pa == 1) |> data.frame()
background <- presence.bg |> dplyr::filter(pa == 0) |> data.frame()
presence <- presence.bg |> dplyr::filter(pa == 1) |> as.data.frame()
background <- presence.bg |> dplyr::filter(pa == 0) |> as.data.frame()

if (with_raster) {
ENMmodel <- ENMeval::ENMevaluate(occs = presence[, c("lon", "lat")],
Expand Down Expand Up @@ -259,8 +259,8 @@ predict_maxent <- function(presence_background,

# We calculate the prediction with the whole dataset

presence <- presence_background |> dplyr::filter(pa == 1) |> data.frame()
background <- presence_background |> dplyr::filter(pa == 0) |> data.frame()
presence <- presence_background |> dplyr::filter(pa == 1) |> as.data.frame()
background <- presence_background |> dplyr::filter(pa == 0) |> as.data.frame()


mod_tuning <- ENMeval::ENMevaluate(occs = presence[, c("lon", "lat", layers)],
Expand Down Expand Up @@ -304,8 +304,8 @@ runs <- c("run_1")
backg_test <- backgr[bg.grp == g, ]
presence_bg_train <- group.all[which(group.all[,1] == g),]

presence <- presence_bg_train |> dplyr::filter(pa == 1) |> data.frame()
background <- presence_bg_train |> dplyr::filter(pa == 0) |> data.frame()
presence <- presence_bg_train |> dplyr::filter(pa == 1) |> as.data.frame()
background <- presence_bg_train |> dplyr::filter(pa == 0) |> as.data.frame()


mod_tuning <- ENMeval::ENMevaluate(occs = presence[, c("lon", "lat", layers)],
Expand All @@ -322,12 +322,18 @@ runs <- c("run_1")
pred_pres <- dismo::predict(mod_tuning@models[[tuned_param]], predictors,
args = sprintf("outputformat=%s", type))

if (inherits(pred_runs, "RasterLayer") || inherits(pred_runs, "RasterStack")) {
pred_runs <- raster::stack(pred_runs, pred_pres)

} else {
pred_runs <- pred_pres
}
#if (inherits(pred_runs, "RasterLayer") || inherits(pred_runs, "RasterStack")) {
# pred_runs <- raster::stack(pred_runs, pred_pres)
#} else {
# pred_runs <- pred_pres
#}
if (is.null(pred_runs)) {
pred_runs <- pred_pres
} else {
pred_runs <- c(pred_runs, pred_pres)
}



}

Expand Down
1 change: 1 addition & 0 deletions scripts/SDM/selectBackground.yml
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ inputs:
- inclusion_buffer
- weighted_raster
- unweighted_raster
- thickening
example: random
n_background:
label: number of background points
Expand Down
Loading