Skip to content

Commit

Permalink
feat: Add kernel callable dense LA solvers for small systems. (#3287)
Browse files Browse the repository at this point in the history
  • Loading branch information
CusiniM authored Aug 26, 2024
1 parent a3e4a51 commit cbe9c5d
Show file tree
Hide file tree
Showing 5 changed files with 575 additions and 1 deletion.
1 change: 1 addition & 0 deletions src/coreComponents/denseLinearAlgebra/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
# Specify all headers
set( denseLinearAlgebra_headers
common/layouts.hpp
denseLASolvers.hpp
interfaces/blaslapack/BlasLapackFunctions.h
interfaces/blaslapack/BlasLapackLA.hpp )

Expand Down
319 changes: 319 additions & 0 deletions src/coreComponents/denseLinearAlgebra/denseLASolvers.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,319 @@
/*
* ------------------------------------------------------------------------------------------------------------
* SPDX-License-Identifier: LGPL-2.1-only
*
* Copyright (c) 2016-2024 Lawrence Livermore National Security LLC
* Copyright (c) 2018-2024 Total, S.A
* Copyright (c) 2018-2024 The Board of Trustees of the Leland Stanford Junior University
* Copyright (c) 2018-2024 Chevron
* Copyright (c) 2019- GEOS/GEOSX Contributors
* All rights reserved
*
* See top level LICENSE, COPYRIGHT, CONTRIBUTORS, NOTICE, and ACKNOWLEDGEMENTS files for details.
* ------------------------------------------------------------------------------------------------------------
*/

/**
* @file denseLASolvers.hpp
*/
#ifndef GEOS_DENSELINEARALGEBRA_DENSELASOLVERS_HPP_
#define GEOS_DENSELINEARALGEBRA_DENSELASOLVERS_HPP_

#include "common/DataTypes.hpp"
#include "denseLinearAlgebra/common/layouts.hpp"
#include "LvArray/src/tensorOps.hpp"
#include "common/logger/Logger.hpp"

#include <complex>

namespace geos
{

namespace denseLinearAlgebra
{

namespace details
{

constexpr real64 singularMatrixTolerance = 1e2*LvArray::NumericLimits< real64 >::epsilon;

/**
* @brief Solves a 2x2 linear system A * x = b.
*
* This function solves a linear system of the form A * x = b, where A is a 2x2 matrix,
* b is a 2x1 vector, and x is the solution vector. The function checks the sizes
* of the inputs to ensure they conform to the expected dimensions. It also checks that
* the determinant of matrix A is not near zero to avoid solving a singular system.
*
* @tparam MATRIX_TYPE The type of the matrix A. Must support indexing with `A[i][j]`.
* @tparam RHS_TYPE The type of the right-hand side vector b. Must support indexing with `b[i]`.
* @tparam SOL_TYPE The type of the solution vector x. Must support indexing with `x[i]`.
*
* @param[in] A The 2x2 matrix representing the system of equations. Must have size 2x2.
* @param[in] b The 2-element vector representing the right-hand side of the equation.
* @param[out] x The 2-element vector that will store the solution to the system.
* @return bool that sepcifies whether the solve succeeded (1) or not (0).
*/
template< typename MATRIX_TYPE,
typename RHS_TYPE,
typename SOL_TYPE >
GEOS_HOST_DEVICE
inline
bool solveTwoByTwoSystem( MATRIX_TYPE const & A, RHS_TYPE const & b, SOL_TYPE && x )
{
LvArray::tensorOps::internal::checkSizes< 2, 2 >( A );
LvArray::tensorOps::internal::checkSizes< 2 >( b );
LvArray::tensorOps::internal::checkSizes< 2 >( x );

real64 const detA = LvArray::tensorOps::determinant< 2 >( A );

if( LvArray::math::abs( detA ) < singularMatrixTolerance )
return false;

real64 const invA = 1.0 / detA;

x[0] = ( A[1][1] * b[0] - A[0][1] * b[1] ) * invA;
x[1] = ( A[0][0] * b[1] - A[1][0] * b[0] ) * invA;

return true;
}

/**
* @brief Solves a 3x3 linear system A * x = b.
*
* This function solves a linear system of the form A * x = b, where A is a 3x3 matrix,
* b is a 3x1 vector, and x is the solution vector. The function checks the sizes
* of the inputs to ensure they conform to the expected dimensions. It also checks that
* the determinant of matrix A is not near zero to avoid solving a singular system.
*
* @tparam MATRIX_TYPE The type of the matrix A. Must support indexing with `A[i][j]`.
* @tparam RHS_TYPE The type of the right-hand side vector b. Must support indexing with `b[i]`.
* @tparam SOL_TYPE The type of the solution vector x. Must support indexing with `x[i]`.
*
* @param[in] A The 3x3 matrix representing the system of equations. Must have size 3x3.
* @param[in] b The 3-element vector representing the right-hand side of the equation.
* @param[out] x The 3-element vector that will store the solution to the system.
* @return bool that sepcifies whether the solve succeeded (1) or not (0).
*/
template< typename MATRIX_TYPE,
typename RHS_TYPE,
typename SOL_TYPE >
GEOS_HOST_DEVICE
inline
bool solveThreeByThreeSystem( MATRIX_TYPE const & A, RHS_TYPE const & b, SOL_TYPE && x )
{
LvArray::tensorOps::internal::checkSizes< 3, 3 >( A );
LvArray::tensorOps::internal::checkSizes< 3 >( b );
LvArray::tensorOps::internal::checkSizes< 3 >( x );

real64 const detA = LvArray::tensorOps::determinant< 3 >( A );

if( LvArray::math::abs( detA ) < singularMatrixTolerance )
return false;

real64 const invA = 1.0 / detA;

real64 const detX0 = b[0] * ( A[1][1] * A[2][2] - A[2][1] * A[1][2] ) -
b[1] * ( A[0][1] * A[2][2] - A[0][2] * A[2][1] ) +
b[2] * ( A[0][1] * A[1][2] - A[0][2] * A[1][1] );

real64 const detX1 = A[0][0] * ( b[1] * A[2][2] - b[2] * A[1][2] ) -
A[1][0] * ( b[0] * A[2][2] - b[2] * A[0][2] ) +
A[2][0] * ( b[0] * A[1][2] - b[1] * A[0][2] );

real64 const detX2 = A[0][0] * ( A[1][1] * b[2] - A[2][1] * b[1] ) -
A[1][0] * ( A[0][1] * b[2] - A[2][1] * b[0] ) +
A[2][0] * ( A[0][1] * b[1] - A[1][1] * b[0] );

x[0] = detX0 * invA;
x[1] = detX1 * invA;
x[2] = detX2 * invA;

return true;
}

/**
* @brief Solves a linear system where the matrix is upper triangular using back substitution.
*
* This function solves the linear system `Ax = b`, where `A` is an upper triangular matrix, using
* back substitution. The solution `x` is computed and stored in the provided output vector.
*
* @tparam N The size of the square matrix `A`.
* @tparam MATRIX_TYPE The type of the matrix `A`.
* @tparam RHS_TYPE The type of the right-hand side vector `b`.
* @tparam SOL_TYPE The type of the solution vector `x`.
* @param[in] A The upper triangular matrix representing the coefficients of the system.
* @param[in] b The right-hand side vector. It is used to compute the solution.
* @param[out] x The solution vector. The result of solving the system `Ax = b` using back substitution.
*/
template< std::ptrdiff_t N,
typename MATRIX_TYPE,
typename RHS_TYPE,
typename SOL_TYPE >
GEOS_HOST_DEVICE
inline
void solveUpperTriangularSystem( MATRIX_TYPE const & A, RHS_TYPE const & b, SOL_TYPE && x )
{
for( std::ptrdiff_t i = N - 1; i >= 0; --i )
{
real64 sum = b[i];
for( std::ptrdiff_t j = i + 1; j < N; ++j )
{
sum -= A[i][j] * x[j];
}
x[i] = sum / A[i][i];
}
}

/**
* @brief Solves a linear system using Gaussian elimination.
*
* This function performs Gaussian elimination on the given matrix `A` and right-hand side vector `b`.
* It transforms the matrix `A` boolo an upper triangular matrix and then solves for the solution `x`
* using back substitution.
*
* @tparam N The size of the square matrix `A`.
* @tparam MATRIX_TYPE The type of the matrix `A`.
* @tparam RHS_TYPE The type of the right-hand side vector `b`.
* @tparam SOL_TYPE The type of the solution vector `x`.
* @param[in,out] A The matrix to be transformed boolo an upper triangular matrix. Modified in place.
* @param[in,out] b The right-hand side vector. Modified in place to reflect the transformed system.
* @param[out] x The solution vector. The result of solving the system `Ax = b`.
* @return bool that sepcifies whether the solve succeeded (1) or not (0).
*/
template< std::ptrdiff_t N,
typename MATRIX_TYPE,
typename RHS_TYPE,
typename SOL_TYPE >
GEOS_HOST_DEVICE
inline
bool solveGaussianElimination( MATRIX_TYPE & A, RHS_TYPE & b, SOL_TYPE && x )
{
static_assert( N > 0, "N must be greater than 0." );
LvArray::tensorOps::internal::checkSizes< N, N >( A );
LvArray::tensorOps::internal::checkSizes< N >( b );
LvArray::tensorOps::internal::checkSizes< N >( x );

// Step 1: Transform boolo an upper triangular matrix

// 1.a. Find the pivot
for( std::ptrdiff_t i = 0; i < N; ++i )
{
std::ptrdiff_t max_row = i;
for( std::ptrdiff_t k = i + 1; k < N; ++k )
{
if( LvArray::math::abs( A[k][i] ) > LvArray::math::abs( A[max_row][i] ))
{
max_row = k;
}
}

// 1.b. Swap rows
for( std::ptrdiff_t k = i; k < N; ++k )
{
// std::swap( A[i][k], A[max_row][k] );
real64 const temp = A[max_row][k];
A[max_row][k] = A[i][k];
A[i][k] = temp;
}
// std::swap( b[i], b[max_row] ); cannot be done on device
real64 const temp = b[i];
b[i] = b[max_row];
b[max_row] = temp;


if( LvArray::math::abs( A[i][i] ) < singularMatrixTolerance )
return false;

// 1.c Eliminate entries below the pivot
for( std::ptrdiff_t k = i + 1; k < N; ++k )
{
real64 const scaling = A[k][i] / A[i][i];
for( std::ptrdiff_t j = i; j < N; ++j )
{
A[k][j] -= scaling * A[i][j];
}
b[k] -= scaling * b[i];
}
}

// Step 2: Backward substitution
solveUpperTriangularSystem< N >( A, b, std::forward< SOL_TYPE >( x ) );

return true;
}

} // details namespace

/**
* @brief Solves a linear system using the most appropriate method based on the size of the system.
*
* This function determines the appropriate method for solving a linear system `Ax = b` based on
* the size of the matrix `A`. For 2x2 and 3x3 systems, specialized solvers are used. For larger systems,
* Gaussian elimination is employed. The matrix and the rhs are modified by the function.
*
* @tparam N The size of the square matrix `A`.
* @tparam MATRIX_TYPE The type of the matrix `A`.
* @tparam RHS_TYPE The type of the right-hand side vector `b`.
* @tparam SOL_TYPE The type of the solution vector `x`.
* @tparam MODIFY_MATRIX boolean flag indicating whether the input matrix `A` and vector `b` should be modified.
* If `1`, the matrix `A` and vector `b` are modified in place. If `0`, copies of
* `A` and `b` are made, and the original data is left unchanged.
* @param[in] A The matrix representing the coefficients of the system.
* @param[in] b The right-hand side vector.
* @param[out] x The solution vector. The result of solving the system `Ax = b`.
* @return bool that sepcifies whether the solve succeeded (1) or not (0).
*/
template< std::ptrdiff_t N,
typename MATRIX_TYPE,
typename RHS_TYPE,
typename SOL_TYPE,
bool MODIFY_MATRIX = 1 >
GEOS_HOST_DEVICE
inline
bool solve( MATRIX_TYPE & A, RHS_TYPE & b, SOL_TYPE && x )
{
static_assert( N > 0, "N must be greater than 0." );
static_assert( N < 10, "N cannot be larger than 9" );
LvArray::tensorOps::internal::checkSizes< N, N >( A );
LvArray::tensorOps::internal::checkSizes< N >( b );
LvArray::tensorOps::internal::checkSizes< N >( x );

if constexpr ( N == 2 )
{
return details::solveTwoByTwoSystem( A, b, std::forward< SOL_TYPE >( x ) );
}
else if constexpr ( N == 3 )
{
return details::solveThreeByThreeSystem( A, b, std::forward< SOL_TYPE >( x ) );
}
else
{
if constexpr ( MODIFY_MATRIX )
{
return details::solveGaussianElimination< N >( A, b, std::forward< SOL_TYPE >( x ) );
}
else
{
real64 A_copy[N][N]{};
real64 b_copy[N]{};

for( std::ptrdiff_t i=0; i < N; ++i )
{
b_copy[i] = b[i];
for( std::ptrdiff_t j=0; j < N; ++j )
{
A_copy[i][j] = A[i][j];
}
}
return details::solveGaussianElimination< N >( A_copy, b_copy, std::forward< SOL_TYPE >( x ) );
}
}
}

} // denseLinearAlgebra

} // geos


#endif /*GEOS_DENSELINEARALGEBRA_DENSELASOLVERS_HPP_*/
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
set( serial_tests
testBlasLapack.cpp
testSolveLinearSystem.cpp )
testSolveLinearSystem.cpp
testDenseLASolvers.cpp )

set( dependencyList gtest denseLinearAlgebra )

Expand Down
Loading

0 comments on commit cbe9c5d

Please sign in to comment.