Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

added ising example #162

Merged
merged 9 commits into from
Feb 27, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions pyproject.toml
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@ torch = ">=1.9.0"
torchtyping = ">=0.1.4"

# dev dependencies.
black = { version = "*", optional = true }
black = { version = "24.2", optional = true }
flake8 = { version = "*", optional = true }
gitmopy = { version = "*", optional = true }
myst-parser = { version = "*", optional = true }
Expand Down Expand Up @@ -86,9 +86,9 @@ all = [
"Bug Tracker" = "https://github.com/saleml/gfn/issues"

[tool.black]
py36 = true
target_version = ["py310"]
include = '\.pyi?$'
exclude = '''/(\.git|\.hg|\.mypy_cache|\.tox|\.venv|build)/g'''
extend-exclude = '''/(\.git|\.hg|\.mypy_cache|\.ipynb|\.tox|\.venv|build)/g'''

[tool.tox]
legacy_tox_ini = '''
Expand Down
5 changes: 2 additions & 3 deletions src/gfn/gflownet/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@ class GFlowNet(ABC, nn.Module, Generic[TrainingSampleType]):

A formal definition of GFlowNets is given in Sec. 3 of [GFlowNet Foundations](https://arxiv.org/pdf/2111.09266).
"""

log_reward_clip_min = float("-inf") # Default off.

@abstractmethod
Expand Down Expand Up @@ -200,9 +201,7 @@ def get_pfs_and_pbs(

return log_pf_trajectories, log_pb_trajectories

def get_trajectories_scores(
self, trajectories: Trajectories
) -> Tuple[
def get_trajectories_scores(self, trajectories: Trajectories) -> Tuple[
TT["n_trajectories", torch.float],
TT["n_trajectories", torch.float],
TT["n_trajectories", torch.float],
Expand Down
4 changes: 1 addition & 3 deletions src/gfn/gflownet/detailed_balance.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,9 +42,7 @@ def __init__(
self.forward_looking = forward_looking
self.log_reward_clip_min = log_reward_clip_min

def get_scores(
self, env: Env, transitions: Transitions
) -> Tuple[
def get_scores(self, env: Env, transitions: Transitions) -> Tuple[
TT["n_transitions", float],
TT["n_transitions", float],
TT["n_transitions", float],
Expand Down
1 change: 1 addition & 0 deletions src/gfn/gym/helpers/box_utils.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
"""This file contains utilitary functions for the Box environment."""

from typing import Tuple

import numpy as np
Expand Down
1 change: 1 addition & 0 deletions src/gfn/gym/hypergrid.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
"""
Copied and Adapted from https://github.com/Tikquuss/GflowNets_Tutorial
"""

from typing import Literal, Tuple

import torch
Expand Down
4 changes: 3 additions & 1 deletion testing/test_environments.py
Original file line number Diff line number Diff line change
Expand Up @@ -209,7 +209,9 @@ def test_box_fwd_step(delta: float):
]

for failing_actions_list in failing_actions_lists_at_s0:
actions = env.actions_from_tensor(format_tensor(failing_actions_list, discrete=False))
actions = env.actions_from_tensor(
format_tensor(failing_actions_list, discrete=False)
)
with pytest.raises(NonValidActionsError):
states = env._step(states, actions)

Expand Down
9 changes: 6 additions & 3 deletions tutorials/examples/train_box.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@

python train_box.py --delta {0.1, 0.25} --tied {--uniform_pb} --loss {TB, DB}
"""

from argparse import ArgumentParser

import numpy as np
Expand Down Expand Up @@ -189,9 +190,11 @@ def main(args): # noqa: C901
if not args.uniform_pb:
optimizer.add_param_group(
{
"params": pb_module.last_layer.parameters()
if args.tied
else pb_module.parameters(),
"params": (
pb_module.last_layer.parameters()
if args.tied
else pb_module.parameters()
),
"lr": args.lr,
}
)
Expand Down
1 change: 1 addition & 0 deletions tutorials/examples/train_discreteebm.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
[Learning GFlowNets from partial episodes for improved convergence and stability](https://arxiv.org/abs/2209.12782)
python train_hypergrid.py --ndim {2, 4} --height 12 --R0 {1e-3, 1e-4} --tied --loss {TB, DB, SubTB}
"""

from argparse import ArgumentParser

import torch
Expand Down
1 change: 1 addition & 0 deletions tutorials/examples/train_hypergrid.py
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
[Learning GFlowNets from partial episodes for improved convergence and stability](https://arxiv.org/abs/2209.12782)
python train_hypergrid.py --ndim {2, 4} --height 12 --R0 {1e-3, 1e-4} --tied --loss {TB, DB, SubTB}
"""

from argparse import ArgumentParser

import torch
Expand Down
134 changes: 134 additions & 0 deletions tutorials/examples/train_ising.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,134 @@
from argparse import ArgumentParser

import torch
import wandb
from tqdm import tqdm

from gfn.gflownet import FMGFlowNet
from gfn.gym import DiscreteEBM
from gfn.gym.discrete_ebm import IsingModel
from gfn.modules import DiscretePolicyEstimator
from gfn.utils.modules import NeuralNet
from gfn.utils.training import validate


def main(args):
# Configs

use_wandb = len(args.wandb_project) > 0
if use_wandb:
wandb.init(project=args.wandb_project)
wandb.config.update(args)

device = "cpu"
torch.set_num_threads(args.n_threads)
hidden_dim = 512

n_hidden = 2
acc_fn = "relu"
lr = 0.001
lr_Z = 0.01
validation_samples = 1000

def make_J(L, coupling_constant):
"""Ising model parameters."""

def ising_n_to_ij(L, n):
i = n // L
j = n - i * L
return (i, j)

N = L**2
J = torch.zeros((N, N), device=torch.device(device))
for k in range(N):
for m in range(k):
x1, y1 = ising_n_to_ij(L, k)
x2, y2 = ising_n_to_ij(L, m)
if x1 == x2 and abs(y2 - y1) == 1:
J[k][m] = 1
J[m][k] = 1
elif y1 == y2 and abs(x2 - x1) == 1:
J[k][m] = 1
J[m][k] = 1

for k in range(L):
J[k * L][(k + 1) * L - 1] = 1
J[(k + 1) * L - 1][k * L] = 1
J[k][k + N - L] = 1
J[k + N - L][k] = 1

return coupling_constant * J

# Ising model env
N = args.L**2
J = make_J(args.L, args.J)
ising_energy = IsingModel(J)
env = DiscreteEBM(N, alpha=1, energy=ising_energy, device_str=device)

# Parametrization and losses
pf_module = NeuralNet(
input_dim=env.preprocessor.output_dim,
output_dim=env.n_actions,
hidden_dim=hidden_dim,
n_hidden_layers=n_hidden,
activation_fn=acc_fn,
)

pf_estimator = DiscretePolicyEstimator(
pf_module, env.n_actions, env.preprocessor, is_backward=False
)
gflownet = FMGFlowNet(pf_estimator)
optimizer = torch.optim.Adam(gflownet.parameters(), lr=1e-3)

# Learning
visited_terminating_states = env.States.from_batch_shape((0,))
states_visited = 0
for i in (pbar := tqdm(range(10000))):
trajectories = gflownet.sample_trajectories(env, n_samples=8, off_policy=False)
training_samples = gflownet.to_training_samples(trajectories)
optimizer.zero_grad()
loss = gflownet.loss(env, training_samples)
loss.backward()
optimizer.step()

states_visited += len(trajectories)
to_log = {"loss": loss.item(), "states_visited": states_visited}

if i % 25 == 0:
tqdm.write(f"{i}: {to_log}")


if __name__ == "__main__":
# Comand-line arguments
parser = ArgumentParser()

parser.add_argument(
"--n_threads",
type=int,
default=4,
help="Number of threads used by PyTorch",
)

parser.add_argument(
"-L",
type=int,
default=6,
help="Length of the grid",
)

parser.add_argument(
"-J",
type=float,
default=0.44,
help="J (Magnetic coupling constant)",
)

parser.add_argument(
"--wandb_project",
type=str,
default="",
help="Name of the wandb project. If empty, don't use wandb",
)

args = parser.parse_args()
main(args)
Loading