-
Notifications
You must be signed in to change notification settings - Fork 112
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
32f459c
commit 1ae2b13
Showing
5 changed files
with
1,570 additions
and
0 deletions.
There are no files selected for viewing
268 changes: 268 additions & 0 deletions
268
examples/CantileverDistributedLoad/cantilever_conservative_distributed_load.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,268 @@ | ||
# from charset_normalizer.legacy import ResultDict | ||
from matplotlib import pyplot as plt | ||
import numpy as np | ||
import elastica as ea | ||
from cantilever_distrubuted_load_postprecessing import ( | ||
plot_video_with_surface, | ||
Find_Tip_Position, | ||
adjust_square_cross_section, | ||
) | ||
|
||
|
||
def Conservative_Force_Simulator(load, Animation=False): | ||
class StretchingBeamSimulator( | ||
ea.BaseSystemCollection, ea.Constraints, ea.Forcing, ea.Damping, ea.CallBacks | ||
): | ||
pass | ||
|
||
stretch_sim = StretchingBeamSimulator() | ||
final_time = 10 | ||
|
||
# Options | ||
PLOT_FIGURE = True | ||
SAVE_FIGURE = False | ||
SAVE_RESULTS = False | ||
# setting up test params | ||
n_elem = 100 | ||
start = np.zeros((3,)) | ||
direction = np.array([1.0, 0.0, 0.0]) | ||
normal = np.array([0.0, 1.0, 0.0]) | ||
base_length = 0.5 | ||
base_radius = 0.01 / ( | ||
np.pi ** (1 / 2) | ||
) # The Cross-sectional area is 1e-4(we assume its equivalent to a square cross-sectional surface with same area) | ||
base_area = np.pi * base_radius**2 | ||
density = 1000 # nomilized with conservative case F=15 | ||
youngs_modulus = 1.2e7 | ||
dl = base_length / n_elem | ||
dt = 0.1 * dl / 50 | ||
I = (0.01**4) / 12 | ||
end_force_x = (youngs_modulus * I * load) / (density * base_area * (base_length**3)) | ||
# For shear modulus of 1e4, nu is 99! | ||
poisson_ratio = 0.0 | ||
shear_modulus = youngs_modulus / (2 * (poisson_ratio + 1.0)) | ||
|
||
rendering_fps = 30 | ||
|
||
stretchable_rod = ea.CosseratRod.straight_rod( | ||
n_elem, | ||
start, | ||
direction, | ||
normal, | ||
base_length, | ||
base_radius, | ||
density, | ||
youngs_modulus=youngs_modulus, | ||
shear_modulus=shear_modulus, | ||
) | ||
|
||
adjust_section = adjust_square_cross_section( | ||
n_elem, | ||
direction, | ||
normal, | ||
base_length, | ||
base_radius, | ||
density, | ||
youngs_modulus=youngs_modulus, | ||
shear_modulus=shear_modulus, | ||
rod_origin_position=start, | ||
ring_rod_flag=False, | ||
) | ||
|
||
stretchable_rod.mass_second_moment_of_inertia = adjust_section[0] | ||
stretchable_rod.inv_mass_second_moment_of_inertia = adjust_section[1] | ||
stretchable_rod.bend_matrix = adjust_section[2] | ||
|
||
stretch_sim.append(stretchable_rod) | ||
stretch_sim.constrain(stretchable_rod).using( | ||
ea.OneEndFixedBC, constrained_position_idx=(0,), constrained_director_idx=(0,) | ||
) | ||
|
||
Conservative_Load = np.array([0.0, -end_force_x, 0.0]) | ||
|
||
stretch_sim.add_forcing_to(stretchable_rod).using( | ||
ea.GravityForces, acc_gravity=Conservative_Load | ||
) | ||
|
||
# add damping | ||
|
||
damping_constant = 0.1 | ||
|
||
stretch_sim.dampen(stretchable_rod).using( | ||
ea.AnalyticalLinearDamper, | ||
damping_constant=damping_constant, | ||
time_step=dt, | ||
) | ||
|
||
# Add call backs | ||
class AxialStretchingCallBack(ea.CallBackBaseClass): | ||
def __init__(self, step_skip: int, callback_params: dict): | ||
ea.CallBackBaseClass.__init__(self) | ||
self.every = step_skip | ||
self.callback_params = callback_params | ||
|
||
def make_callback(self, system, time, current_step: int): | ||
if current_step % self.every == 0: | ||
self.callback_params["time"].append(time) | ||
self.callback_params["step"].append(current_step) | ||
self.callback_params["position"].append( | ||
system.position_collection.copy() | ||
) | ||
self.callback_params["com"].append( | ||
system.compute_position_center_of_mass() | ||
) | ||
self.callback_params["radius"].append(system.radius.copy()) | ||
self.callback_params["velocity"].append( | ||
system.velocity_collection.copy() | ||
) | ||
self.callback_params["avg_velocity"].append( | ||
system.compute_velocity_center_of_mass() | ||
) | ||
|
||
self.callback_params["center_of_mass"].append( | ||
system.compute_position_center_of_mass() | ||
) | ||
self.callback_params["velocity_magnitude"].append( | ||
( | ||
stretchable_rod.velocity_collection[-1][0] ** 2 | ||
+ stretchable_rod.velocity_collection[-1][1] ** 2 | ||
+ stretchable_rod.velocity_collection[-1][2] ** 2 | ||
) | ||
** 0.5 | ||
) | ||
|
||
recorded_history = ea.defaultdict(list) | ||
stretch_sim.collect_diagnostics(stretchable_rod).using( | ||
AxialStretchingCallBack, step_skip=200, callback_params=recorded_history | ||
) | ||
|
||
stretch_sim.finalize() | ||
timestepper = ea.PositionVerlet() | ||
# timestepper = PEFRL() | ||
|
||
total_steps = int(final_time / dt) | ||
print(stretch_sim) | ||
print("Total steps", total_steps) | ||
ea.integrate(timestepper, stretch_sim, final_time, total_steps) | ||
|
||
relative_tip_position = np.zeros( | ||
2, | ||
) | ||
relative_tip_position[0] = ( | ||
Find_Tip_Position(stretchable_rod, n_elem)[0] / base_length | ||
) | ||
relative_tip_position[1] = ( | ||
-Find_Tip_Position(stretchable_rod, n_elem)[1] / base_length | ||
) | ||
|
||
print(relative_tip_position) | ||
|
||
if Animation: | ||
plot_video_with_surface( | ||
[recorded_history], | ||
video_name="cantilever_conservative_distributed_load.mp4", | ||
fps=rendering_fps, | ||
step=1, | ||
# The following parameters are optional | ||
x_limits=(-0.0, 0.5), # Set bounds on x-axis | ||
y_limits=(-0.5, 0.0), # Set bounds on y-axis | ||
z_limits=(-0.0, 0.5), # Set bounds on z-axis | ||
dpi=100, # Set the quality of the image | ||
vis3D=True, # Turn on 3D visualization | ||
vis2D=False, # Turn on projected (2D) visualization | ||
) | ||
|
||
relative_tip_position = np.zeros( | ||
2, | ||
) | ||
relative_tip_position[0] = ( | ||
Find_Tip_Position(stretchable_rod, n_elem)[0] / base_length | ||
) | ||
relative_tip_position[1] = ( | ||
-Find_Tip_Position(stretchable_rod, n_elem)[1] / base_length | ||
) | ||
|
||
print(relative_tip_position) | ||
return relative_tip_position | ||
|
||
|
||
Conservative_Force_Simulator(15, Animation=True) | ||
|
||
x_tip_experiment = [] | ||
y_tip_experiment = [] | ||
x_tip_paper = [ | ||
0.9912, | ||
0.9309, | ||
0.8455, | ||
0.7613, | ||
0.6874, | ||
0.6249, | ||
0.5724, | ||
0.5281, | ||
0.4906, | ||
0.4584, | ||
0.4306, | ||
0.4064, | ||
0.3851, | ||
] | ||
y_tip_paper = [ | ||
0.1241, | ||
0.3411, | ||
0.4976, | ||
0.6031, | ||
0.6745, | ||
0.7243, | ||
0.7603, | ||
0.7871, | ||
0.8077, | ||
0.8239, | ||
0.8370, | ||
0.8478, | ||
0.8568, | ||
] | ||
load_on_rod = np.arange(1, 26, 2) | ||
for i in load_on_rod: | ||
x_tip_experiment.append(Conservative_Force_Simulator(i)[0]) | ||
y_tip_experiment.append(Conservative_Force_Simulator(i)[1]) | ||
|
||
|
||
plt.plot( | ||
load_on_rod, | ||
x_tip_paper, | ||
color="black", | ||
marker="*", | ||
linestyle="--", | ||
label="Theoretical_x", | ||
) | ||
plt.plot( | ||
load_on_rod, | ||
y_tip_paper, | ||
color="black", | ||
marker="*", | ||
linestyle=":", | ||
label="Theoretical_y", | ||
) | ||
plt.scatter( | ||
load_on_rod, | ||
x_tip_experiment, | ||
color="blue", | ||
marker="s", | ||
linestyle="None", | ||
label="x_tip/L", | ||
) | ||
plt.scatter( | ||
load_on_rod, | ||
y_tip_experiment, | ||
color="red", | ||
marker="s", | ||
linestyle="None", | ||
label="y_tip/L", | ||
) | ||
|
||
plt.title("Conservative-Load Elastica Simulation Results") | ||
# Title | ||
plt.xlabel("Load") # X-axis label | ||
plt.ylabel("x_tip/L and y_tip/L") # Y-axis label | ||
plt.grid() | ||
plt.legend() # Optional: Add a grid | ||
plt.show() # Display the plot |
Oops, something went wrong.