Skip to content

Commit

Permalink
Merge pull request #317 from Ali-7800/113_dev_contact
Browse files Browse the repository at this point in the history
Refactor rod-plane contact examples + Continuum Snake With Lifting Wave example
  • Loading branch information
Ali-7800 authored Dec 5, 2023
2 parents 1da4dbc + 1273c13 commit c2a641e
Show file tree
Hide file tree
Showing 11 changed files with 1,036 additions and 32 deletions.
2 changes: 1 addition & 1 deletion elastica/contact_forces.py
Original file line number Diff line number Diff line change
Expand Up @@ -539,7 +539,7 @@ def _check_systems_validity(
) -> None:
"""
This checks the contact order and type of a SystemType object and an AllowedContactType object.
For the RodSphereContact class first_system should be a rod and second_system should be a plane.
For the RodPlaneContact class first_system should be a rod and second_system should be a plane.
Parameters
----------
system_one
Expand Down
19 changes: 12 additions & 7 deletions examples/ContinuumSnakeCase/continuum_snake.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,12 @@


class SnakeSimulator(
ea.BaseSystemCollection, ea.Constraints, ea.Forcing, ea.Damping, ea.CallBacks
ea.BaseSystemCollection,
ea.Constraints,
ea.Forcing,
ea.Damping,
ea.CallBacks,
ea.Contact,
):
pass

Expand Down Expand Up @@ -76,21 +81,21 @@ def run_snake(
)

# Add friction forces
origin_plane = np.array([0.0, -base_radius, 0.0])
normal_plane = normal
ground_plane = ea.Plane(
plane_origin=np.array([0.0, -base_radius, 0.0]), plane_normal=normal
)
snake_sim.append(ground_plane)
slip_velocity_tol = 1e-8
froude = 0.1
mu = base_length / (period * period * np.abs(gravitational_acc) * froude)
kinetic_mu_array = np.array(
[mu, 1.5 * mu, 2.0 * mu]
) # [forward, backward, sideways]
static_mu_array = np.zeros(kinetic_mu_array.shape)
snake_sim.add_forcing_to(shearable_rod).using(
ea.AnisotropicFrictionalPlane,
snake_sim.detect_contact_between(shearable_rod, ground_plane).using(
ea.RodPlaneContactWithAnisotropicFriction,
k=1.0,
nu=1e-6,
plane_origin=origin_plane,
plane_normal=normal_plane,
slip_velocity_tol=slip_velocity_tol,
static_mu_array=static_mu_array,
kinetic_mu_array=kinetic_mu_array,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import to_rgb
from tqdm import tqdm


def plot_snake_velocity(
plot_params: dict,
period,
filename="slithering_snake_velocity.png",
SAVE_FIGURE=False,
):
time_per_period = np.array(plot_params["time"]) / period
avg_velocity = np.array(plot_params["avg_velocity"])

[
velocity_in_direction_of_rod,
velocity_in_rod_roll_dir,
_,
_,
] = compute_projected_velocity(plot_params, period)

fig = plt.figure(figsize=(10, 8), frameon=True, dpi=150)
plt.rcParams.update({"font.size": 16})
ax = fig.add_subplot(111)
ax.grid(visible=True, which="minor", color="k", linestyle="--")
ax.grid(visible=True, which="major", color="k", linestyle="-")
ax.plot(
time_per_period[:], velocity_in_direction_of_rod[:, 2], "r-", label="forward"
)
ax.plot(
time_per_period[:],
velocity_in_rod_roll_dir[:, 0],
c=to_rgb("xkcd:bluish"),
label="lateral",
)
ax.plot(time_per_period[:], avg_velocity[:, 1], "k-", label="normal")
ax.set_ylabel("Velocity [m/s]", fontsize=16)
ax.set_xlabel("Time [s]", fontsize=16)
fig.legend(prop={"size": 20})
plt.show()
# Be a good boy and close figures
# https://stackoverflow.com/a/37451036
# plt.close(fig) alone does not suffice
# See https://github.com/matplotlib/matplotlib/issues/8560/
plt.close(plt.gcf())

if SAVE_FIGURE:
fig.savefig(filename)


def plot_video(
plot_params: dict,
video_name="video.mp4",
fps=15,
xlim=(0, 4),
ylim=(-1, 1),
): # (time step, x/y/z, node)
import matplotlib.animation as manimation

positions_over_time = np.array(plot_params["position"])

print("plot video")
FFMpegWriter = manimation.writers["ffmpeg"]
metadata = dict(title="Movie Test", artist="Matplotlib", comment="Movie support!")
writer = FFMpegWriter(fps=fps, metadata=metadata)
fig = plt.figure(figsize=(10, 8), frameon=True, dpi=150)
ax = fig.add_subplot(111)
ax.set_xlim(*xlim)
ax.set_ylim(*ylim)
ax.set_xlabel("z [m]", fontsize=16)
ax.set_ylabel("x [m]", fontsize=16)
rod_lines_2d = ax.plot(positions_over_time[0][0], positions_over_time[0][1])[0]
# plt.axis("equal")
with writer.saving(fig, video_name, dpi=150):
for time in tqdm(range(1, len(plot_params["time"]))):
rod_lines_2d.set_xdata(positions_over_time[time][0])
rod_lines_2d.set_ydata(positions_over_time[time][1])
writer.grab_frame()

# Be a good boy and close figures
# https://stackoverflow.com/a/37451036
# plt.close(fig) alone does not suffice
# See https://github.com/matplotlib/matplotlib/issues/8560/
plt.close(plt.gcf())


def compute_projected_velocity(plot_params: dict, period):

time_per_period = np.array(plot_params["time"]) / period
avg_velocity = np.array(plot_params["avg_velocity"])
center_of_mass = np.array(plot_params["center_of_mass"])

# Compute rod velocity in rod direction. We need to compute that because,
# after snake starts to move it chooses an arbitrary direction, which does not
# have to be initial tangent direction of the rod. Thus we need to project the
# snake velocity with respect to its new tangent and roll direction, after that
# we will get the correct forward and lateral speed. After this projection
# lateral velocity of the snake has to be oscillating between + and - values with
# zero mean.

# Number of steps in one period.
period_step = int(1.0 / (time_per_period[-1] - time_per_period[-2]))
number_of_period = int(time_per_period[-1])

# Center of mass position averaged in one period
center_of_mass_averaged_over_one_period = np.zeros((number_of_period - 2, 3))
for i in range(1, number_of_period - 1):
# position of center of mass averaged over one period
center_of_mass_averaged_over_one_period[i - 1] = np.mean(
center_of_mass[(i + 1) * period_step : (i + 2) * period_step]
- center_of_mass[(i + 0) * period_step : (i + 1) * period_step],
axis=0,
)
# Average the rod directions over multiple periods and get the direction of the rod.
direction_of_rod = np.mean(center_of_mass_averaged_over_one_period, axis=0)
direction_of_rod /= np.linalg.norm(direction_of_rod, ord=2)

# Compute the projected rod velocity in the direction of the rod
velocity_mag_in_direction_of_rod = np.einsum(
"ji,i->j", avg_velocity, direction_of_rod
)
velocity_in_direction_of_rod = np.einsum(
"j,i->ji", velocity_mag_in_direction_of_rod, direction_of_rod
)

# Get the lateral or roll velocity of the rod after subtracting its projected
# velocity in the direction of rod
velocity_in_rod_roll_dir = avg_velocity - velocity_in_direction_of_rod

# Compute the average velocity over the simulation, this can be used for optimizing snake
# for fastest forward velocity. We start after first period, because of the ramping up happens
# in first period.
average_velocity_over_simulation = np.mean(
velocity_in_direction_of_rod[period_step * 2 :], axis=0
)

return (
velocity_in_direction_of_rod,
velocity_in_rod_roll_dir,
average_velocity_over_simulation[2],
average_velocity_over_simulation[0],
)


def plot_curvature(
plot_params: dict,
rest_lengths,
period,
save_fig=False,
filename="continuum_snake_curvature",
):
s = np.cumsum(rest_lengths)
L0 = s[-1]
s = s / L0
s = s[:-1].copy()
x = np.linspace(0, 1, 100)
curvature = np.array(plot_params["curvature"])
time = np.array(plot_params["time"])
peak_time = period * 0.125
dt = time[1] - time[0]
peak_idx = int(peak_time / (dt))
plt.rcParams.update({"font.size": 16})
fig = plt.figure(figsize=(10, 8), frameon=True, dpi=150)
ax = fig.add_subplot(111)
try:
for i in range(peak_idx * 8, peak_idx * 8 * 2, peak_idx):
ax.plot(s, curvature[i, 0, :] * L0, "k")
except:
print("Simulation time not long enough to plot curvature")
ax.plot(
x, 7 * np.cos(2 * np.pi * x - 0.80), "--", label="stereotypical snake curvature"
)
ax.set_ylabel(r"$\kappa$", fontsize=16)
ax.set_xlabel("s", fontsize=16)
ax.set_xlim(0, 1)
ax.set_ylim(-10, 10)
fig.legend(prop={"size": 16})
plt.show()
if save_fig:
fig.savefig(filename)

# Be a good boy and close figures
# https://stackoverflow.com/a/37451036
# plt.close(fig) alone does not suffice
# See https://github.com/matplotlib/matplotlib/issues/8560/
plt.close(plt.gcf())
Loading

0 comments on commit c2a641e

Please sign in to comment.