-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Joseph Kleinhenz
committed
Jun 10, 2024
1 parent
21de1a3
commit 010755d
Showing
3 changed files
with
299 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from ._chebyshev import Chebyshev | ||
|
||
__all__ = ["Chebyshev"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,243 @@ | ||
import functools | ||
from typing import Callable | ||
|
||
import torch | ||
from torch import Tensor | ||
|
||
|
||
def _dct_ii_fft(input: Tensor, dim: int = -1): | ||
input = input.transpose(dim, -1) | ||
|
||
# see https://dsp.stackexchange.com/questions/2807/fast-cosine-transform-via-fft | ||
N = input.shape[-1] | ||
|
||
y = torch.zeros(*input.shape[:-1], 2 * N, device=input.device, dtype=input.dtype) | ||
y[..., :N] = input | ||
y[..., N:] = input.flip((-1,)) | ||
|
||
output = torch.fft.fft(y)[..., :N] | ||
|
||
k = torch.arange(N, device=input.device, dtype=input.dtype) | ||
output *= torch.exp(-1j * torch.pi * k / (2 * N)) | ||
|
||
output = output.transpose(dim, -1) | ||
|
||
return output.real | ||
|
||
|
||
def _idct_ii_fft(input: Tensor, dim: int = -1): | ||
input = input.transpose(dim, -1) | ||
|
||
N = input.shape[-1] | ||
k = torch.arange(N, dtype=input.dtype, device=input.device) | ||
|
||
# Makhoul 9a | ||
yk_half = torch.exp(1j * torch.pi * k / (2 * N)) * input | ||
|
||
# Makhoul 12,13 | ||
yk = torch.cat( | ||
[ | ||
yk_half, | ||
torch.zeros(*input.shape[:-1], 1, dtype=input.dtype, device=input.device), | ||
yk_half[..., 1:].conj().flip((-1,)), | ||
], | ||
dim=-1, | ||
) | ||
|
||
yn = torch.fft.ifft(yk) | ||
|
||
output = yn[..., :N].real | ||
|
||
return output.transpose(dim, -1) | ||
|
||
|
||
@functools.lru_cache(maxsize=128) | ||
def chebyshev_t_roots(N: int, device=None, dtype=None): | ||
k = torch.arange(N, device=device, dtype=dtype) | ||
xk = torch.cos(torch.pi * (2 * k + 1) / (2 * N)) | ||
return xk | ||
|
||
|
||
def chebyshev_t_values_to_coefficients(input: Tensor, dim: int = -1): | ||
input = input.transpose(dim, -1) | ||
|
||
N = input.shape[-1] | ||
j = torch.arange(0, N, dtype=input.dtype, device=input.device) | ||
delta_j0 = (j == 0).to(input.dtype) | ||
c = ((2 - delta_j0) / (2 * N)) * _dct_ii_fft(input) | ||
|
||
c = c.transpose(dim, -1) | ||
return c | ||
|
||
|
||
def chebyshev_t_coefficients_to_values(input: Tensor): | ||
N = input.shape[-1] | ||
j = torch.arange(0, N, dtype=input.dtype, device=input.device) | ||
delta_j0 = (j == 0).to(input.dtype) | ||
return _idct_ii_fft(input * (2 * N / (2 - delta_j0))) | ||
|
||
|
||
def chebyshev_t_clenshaw_eval(x: Tensor, a: Tensor): | ||
# x: shape (*,) | ||
# a: shape (**,N) | ||
# output: shape (*, **) | ||
|
||
N = a.shape[-1] | ||
|
||
x = x[..., None] | ||
|
||
bk_plus_one = torch.zeros_like(x) | ||
bk_plus_two = torch.zeros_like(x) | ||
|
||
for k in range(N - 1, 0, -1): | ||
bk = a[..., k] + 2 * x * bk_plus_one - bk_plus_two | ||
bk_plus_two = bk_plus_one | ||
bk_plus_one = bk | ||
|
||
# one more iteration to get b0 | ||
bk = a[..., 0] + 2 * x * bk_plus_one - bk_plus_two | ||
|
||
return (0.5 * (a[..., 0] + bk - bk_plus_two)).squeeze(-1) | ||
|
||
|
||
def from_chebyshev_domain(x, a, b): | ||
"""Map x [-1, 1] to y in [a, b].""" | ||
return x * (b - a) / 2 + (b + a) / 2 | ||
|
||
|
||
def to_chebyshev_domain(y, a, b): | ||
"""Map y in [a, b] to x in [-1,1].""" | ||
return (1 / (b - a)) * (2 * y - b - a) | ||
|
||
|
||
def chebyshev_t_integral_operator(N: int, dtype=None, device=None): | ||
a = torch.cat( | ||
[ | ||
torch.tensor( | ||
[ | ||
0.25, | ||
], | ||
dtype=dtype, | ||
device=device, | ||
), | ||
-0.5 * (1 / (torch.arange(2, N + 1, dtype=dtype, device=device) - 1)), | ||
] | ||
) | ||
b = torch.cat( | ||
[ | ||
torch.tensor([1, 0.25], dtype=dtype, device=device), | ||
0.5 * (1 / (torch.arange(2, N, dtype=dtype, device=device) + 1)), | ||
] | ||
) | ||
op = (torch.diagflat(a, 1) + torch.diagflat(b, -1))[:, :-1] | ||
return op | ||
|
||
|
||
def chebyshev_t_cumulative_integral_coefficients( | ||
coefficients: Tensor, | ||
a: float = -1.0, | ||
b: float = 1.0, | ||
dim: int = -1, | ||
complement: bool = False, | ||
): | ||
"""Compute the coefficients for the chebyshev series for the cummulative integral.""" | ||
device = coefficients.device | ||
dtype = coefficients.dtype | ||
coefficients = coefficients.transpose(dim, -1) | ||
N = coefficients.shape[-1] | ||
op = chebyshev_t_integral_operator(N, device=device, dtype=dtype) | ||
c_int = torch.einsum("ij,...j->...i", op, coefficients) | ||
c_int *= (b - a) / 2 | ||
|
||
if complement: | ||
int_b = c_int.sum(dim=-1) | ||
c_int = -1 * c_int | ||
c_int[..., 0] += int_b | ||
else: | ||
int_a = (c_int * (-1) ** torch.arange(N + 1, device=device, dtype=dtype)).sum( | ||
dim=-1 | ||
) | ||
c_int[..., 0] -= int_a | ||
|
||
c_int = c_int.transpose(dim, -1) | ||
return c_int | ||
|
||
|
||
class Chebyshev: | ||
"""Multidimensional chebyshev series representation.""" | ||
|
||
def __init__( | ||
self, | ||
coefficients: torch.Tensor, | ||
a: list[float] | None, | ||
b: list[float] | None, | ||
): | ||
d = coefficients.ndim | ||
|
||
assert d >= 0 | ||
|
||
if a is None: | ||
a = [-1] * d | ||
|
||
if b is None: | ||
b = [1] * d | ||
|
||
self.coefficients = coefficients | ||
self.d = d | ||
self.a = a | ||
self.b = b | ||
|
||
@classmethod | ||
def fit( | ||
cls, | ||
f: Callable, | ||
d: int, | ||
order: int | list[int], | ||
a: list[float] | None = None, | ||
b: list[float] | None = None, | ||
device=None, | ||
dtype=None, | ||
): | ||
if isinstance(order, int): | ||
order = [order] * d | ||
|
||
if a is None: | ||
a = [-1] * d | ||
|
||
if b is None: | ||
b = [1] * d | ||
|
||
y = [] | ||
for i in range(d): | ||
shape = [order[i] if j == i else 1 for j in range(d)] | ||
xi = chebyshev_t_roots(order[i], device=device, dtype=dtype) | ||
yi = from_chebyshev_domain(xi, a[i], b[i]).view(*shape) | ||
y.append(yi) | ||
|
||
values = f(*y) | ||
|
||
c = values | ||
for i in range(d): | ||
c = chebyshev_t_values_to_coefficients(c, dim=i) | ||
|
||
return cls(c, a, b) | ||
|
||
def __call__(self, *args): | ||
assert len(args) == self.d | ||
|
||
out = self.coefficients | ||
for i in range(self.d - 1, -1, -1): | ||
xi = to_chebyshev_domain(args[i], self.a[i], self.b[i]) | ||
out = chebyshev_t_clenshaw_eval(xi, out) | ||
|
||
return out | ||
|
||
def cumulative_integral(self, dim: int = -1, complement: bool = False): | ||
c_int = chebyshev_t_cumulative_integral_coefficients( | ||
self.coefficients, | ||
a=self.a[dim], | ||
b=self.b[dim], | ||
dim=dim, | ||
complement=complement, | ||
) | ||
return Chebyshev(c_int, self.a, self.b) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
import torch | ||
from beignet.polynomial import Chebyshev | ||
|
||
|
||
def test_chebyshev_fit_1d(): | ||
a = 0.0 | ||
b = 2.0 | ||
|
||
def f(x): | ||
return torch.exp(-x + torch.cos(10 * x)) | ||
|
||
interp = Chebyshev.fit(f, d=1, a=[a], b=[b], order=200, dtype=torch.float64) | ||
|
||
x = torch.linspace(a, b, 1001, dtype=torch.float64) | ||
|
||
err = f(x) - interp(x) | ||
|
||
assert (err.abs() < 1e-10).all() | ||
|
||
|
||
def test_chebyshev_fit_2d(): | ||
def f(x, y): | ||
return torch.exp(-x * y + torch.cos(10 * x / (y.pow(2) + 1))) * torch.exp( | ||
-y.pow(2) + 1.0 | ||
) | ||
|
||
interp = Chebyshev.fit(f, d=2, order=[201, 101], dtype=torch.float64) | ||
|
||
x = torch.linspace(-1.0, 1.0, 1001, dtype=torch.float64) | ||
y = torch.linspace(-1.0, 1.0, 501, dtype=torch.float64) | ||
|
||
err = f(x[:, None], y[None, :]) - interp(x, y) | ||
|
||
assert (err.abs() < 1e-10).all() | ||
|
||
|
||
def test_chebyshev_cumulative_integral_2d(): | ||
def f(x, y): | ||
return torch.sin(2 * x + 1) * y | ||
|
||
def int_f(x, y): | ||
return torch.sin(x) * torch.sin(x + 1) * y | ||
|
||
interp = Chebyshev.fit(f, d=2, order=[201, 101], dtype=torch.float64) | ||
|
||
int_interp = interp.cumulative_integral(dim=0) | ||
|
||
x = torch.linspace(-1.0, 1.0, 1001, dtype=torch.float64) | ||
y = torch.linspace(-1.0, 1.0, 501, dtype=torch.float64) | ||
|
||
err = int_f(x[:, None], y[None, :]) - int_interp(x, y) | ||
|
||
assert (err.abs() < 1e-10).all() |