Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix long contexts in LoRA #624

Merged
merged 2 commits into from
Jan 2, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions tests/lora/conftest.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,6 +64,7 @@ def cleanup_fixture(should_do_global_cleanup_after_test: bool):

@pytest.fixture
def dist_init():
import habana_frameworks.torch.hpu # noqa: F401
temp_file = tempfile.mkstemp()[1]
backend_type = "hccl" if current_platform.is_hpu() else "nccl"
init_distributed_environment(
Expand Down
24 changes: 19 additions & 5 deletions vllm/lora/punica_wrapper/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,8 @@

import torch

from vllm.platforms import current_platform

if TYPE_CHECKING:
# avoid circuit import
from vllm.lora.layers import LoRAMapping
Expand Down Expand Up @@ -86,10 +88,14 @@ def convert_mapping(
embedding_indices = index_mapping_indices.copy()
lora_indices = index_mapping_indices.copy()
long_lora_offsets: Optional[torch.Tensor] = None

if long_lora_context:
long_lora_offsets = torch.zeros(len(index_mapping_indices),
device=device,
dtype=torch.long)
if current_platform.is_hpu():
long_lora_offsets_list: List[int] = []
else:
long_lora_offsets = torch.zeros(len(index_mapping_indices),
device=device,
dtype=torch.long)
prompt_mapping: List[int] = [
lora_index_to_id.index(x) if x > 0 else -1
for x in mapping.prompt_mapping
Expand All @@ -102,10 +108,18 @@ def convert_mapping(
embedding_indices[i] = lora_idx if index_mapping_indices[i] > 0 else 0
lora_indices[i] = lora_idx
if long_lora_context:
assert long_lora_offsets is not None
lora_offset: int = long_lora_context.offsets_by_lora_id.get(
index_mapping_indices[i], 0)
long_lora_offsets[i] = lora_offset
if current_platform.is_hpu():
long_lora_offsets_list.append(lora_offset)
else:
assert long_lora_offsets is not None
long_lora_offsets[i] = lora_offset

if long_lora_context and current_platform.is_hpu():
long_lora_offsets = torch.tensor(long_lora_offsets_list,
device=device,
dtype=torch.long)

indices_list: List[Union[List[int], torch.Tensor]] = [
index_mapping_indices,
Expand Down
5 changes: 4 additions & 1 deletion vllm/model_executor/layers/rotary_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -232,7 +232,10 @@ def forward_hpu(
) -> Tuple[torch.Tensor, torch.Tensor]:
from habana_frameworks.torch.hpex.kernels import (
RotaryPosEmbeddingMode, apply_rotary_pos_emb)
if self.sin is None:

# Prepare cos-sin caches for long-context + LoRA with offsets for every
# forward, since the offset information wasn't available previously
if hasattr(self, "scaling_factors") or self.sin is None:
self.prepare_cos_sin(positions, offsets)
num_tokens = positions.shape[0] * positions.shape[1]
# HPU RoPE kernel requires hidden dimension for cos and sin to be equal
Expand Down
Loading