-
Notifications
You must be signed in to change notification settings - Fork 0
Haeung9/GCM_simulation
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
------------------------------------------------------------------------------------------------------------------------------------------------ Table of Contents Matlab code: 1. main.m 2. parameter_setting.m 3. result_visualization.m 4. Gcode_generation_complex.m 5. sim_singleiter.m 6. OMP_c.m 7. SBL_joint_inputnoise.m 8. B2I.m 9. I2B.m Data: 10. Data_collection_1112.mat ------------------------------------------------------------------------------------------------------------------------------------------------ 1. main.m % Starts simulation with this code ------------------------------------------------------------------------------------------------------------------------------------------------ 2. parameter_setting.m % Set parameters ------------------------------------------------------------------------------------------------------------------------------------------------ 3. result_visualization.m % Draws bit error rate curve with given data set of simulation result ------------------------------------------------------------------------------------------------------------------------------------------------ 4. Gcode_generation_complex.m % Gaussian code generation. matrix = [Gc, Pc, Bc, BPc] = % Gcode_generation_complex(N, M) returns matrices, which are % generator/parity-check matrix for Gaussian-LBC method, and % codebook/parity-check matrix for Gaussian codebook method. % % The positive integer N and M define the length of the codeword and % message bits, respectively. % % Gc is N-by-M, Pc is N-by-(N-M), Bc is N-by-2^M, and BPc is n-by-(N-2^M) for codebook EV method. % % N must satisfy N > M and N > 2^M. ------------------------------------------------------------------------------------------------------------------------------------------------ 5. sim_singleiter.m % A single simulation of Gaussian coding and decoding. It returns the % number of bit errors and MSE of jamming estimation. If MODE = 'uncoded', % second output is BE of unjammed DSSS. Njamsupp: number of jamming support % set Jam_var: variance of nonzero elements of jamming Noise_var: variance % of noise N: block length in complex expression M: message length in QPSK % expression G: coding matrix P: parity-check matrix MODE: determin % operating mode. 'linear', 'codebook', 'uncoded', 'clear'. default is % 'linear'. If G, and P are not provided, MODE = 'uncoded'. JEMETHOD: % determin jamming estimation method. 'OMP', 'SBL'. Default is OMP. % Dependancy: - OMP_c, SBL_intrinsic_complex, B2I, I2B. ------------------------------------------------------------------------------------------------------------------------------------------------ 6. OMP_c.m % est_x=OMP_c(y,F,tol,K) is the Othogonal Matching Pursuit algorithm for % sparse signal recovery. % % The estimation of sparse signal, est_x is calculated by known measurement % y and measurment matrix F, such that ||y - F*est_x|| is minimized. % % If users are aware of sparsity and power of spares signal a priori, the % information can be exploited as forms of input arguments K and tol. If % the arguments are not declared, those parameters are set to be default % value. % % est_x=OMP_c(y,F) returns the spares signal est_x. % % est_x=OMP_c(y,F,tol,K) returns the spares signal est_x, using maximum K % iterations. The iteration is finished where energy of residual decrease % under the value of tol. ------------------------------------------------------------------------------------------------------------------------------------------------ 7. SBL_joint_inputnoise.m % [spare_solution, noise, G] = SBL_joint_inputnoise(A, b, var, tol, % Max_cnt) is the Sparse Bayesian Learning algorithm for sparse signal % recovery. The estimation of sparse signal vector, sparse_solution, and % input white noise vector, noise, are jointly calculated by using % measurement matrix A, measurement b, and input white noise variance, var. % % A is the measurement matrix, which is product of parity-check matrix and % inverse of channel matrix. % % var is the noise variance of receiver, which can be pre-estimated by receiver hardware. % % tol and Max_cnt are tolerance and maximum number of iteration, % respectively. The values are used to determine the termination condition % of SBL iteration. The default value is set to tol = 0.01 and Max_cnt = % 20, by heuristic way. % % sparse is the sparse Gaussian vector, which is assumed to follow a % Gaussian distribution with zero mean and covariance matrix G. % % noise is the input white noise vector, which is assumed to follow a % Gaussian distribution with zero mean and covariance matrix var*eye. % % G is an optional output, which is a hyperparameter in Bayesian method. ------------------------------------------------------------------------------------------------------------------------------------------------ 8. B2I.m %B2I: binary vector to indicator vector % {0,1} binary vector is converted to an indicator vector correspond to % the decimal number. If bin is L-by-N matrix, it returns 2^L-by-N matrix % consist of {0,1}^(2^L) binary vectors. ------------------------------------------------------------------------------------------------------------------------------------------------ 9. I2B.m %I2B: indicator vector to binary vector % an indicator vector is converted to {0,1} binary vector ------------------------------------------------------------------------------------------------------------------------------------------------ 10. Data_collection_1112.mat % A Matlab workspace contains simulation result, used to draw the BER figure ------------------------------------------------------------------------------------------------------------------------------------------------ Copyright 2017-2020 Haeung Choi, [email protected] Version 2020.12.28 ------------------------------------------------------------------------------------------------------------------------------------------------
About
No description, website, or topics provided.
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published