Skip to content

PyTorch implementation of "MIDA: Multiple Imputation using Denoising Autoencoders"

License

Notifications You must be signed in to change notification settings

Harry24k/MIDA-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

19 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MIDA-pytorch

A pytorch implementation of "MIDA: Multiple Imputation using Denoising Autoencoders"

Summary

  1. Doing imputation with Overcomplete AutoEncoder for missing data
  2. Using complete data for training
  3. Dropout is used to generate artificial missings in the training session
  4. Experimenting with two missing methods(MCAR/MNAR)
  5. Simple but good

Requirements

  • python==3.6
  • numpy==1.14.2
  • pandas==0.22.0
  • scikit-learn==0.19.1
  • pytorch==1.0.0

Data

In the paper, 15 publicly available datasets used.
In this code, only 'Boston Housing' data is used among 15.
http://math.furman.edu/~dcs/courses/math47/R/library/mlbench/html/BostonHousing.html

About

PyTorch implementation of "MIDA: Multiple Imputation using Denoising Autoencoders"

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published