A pytorch implementation of "MIDA: Multiple Imputation using Denoising Autoencoders"
- Doing imputation with Overcomplete AutoEncoder for missing data
- Using complete data for training
- Dropout is used to generate artificial missings in the training session
- Experimenting with two missing methods(MCAR/MNAR)
- Simple but good
- python==3.6
- numpy==1.14.2
- pandas==0.22.0
- scikit-learn==0.19.1
- pytorch==1.0.0
In the paper, 15 publicly available datasets used.
In this code, only 'Boston Housing' data is used among 15.
http://math.furman.edu/~dcs/courses/math47/R/library/mlbench/html/BostonHousing.html