-
Notifications
You must be signed in to change notification settings - Fork 17
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
b573b45
commit 508f066
Showing
2 changed files
with
252 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,5 @@ | ||
python plot_bad.py networks/input_tuning_dspn_cortical_signal_10Hz networks/input_tuning_dspn_cortical_signal_10Hz/figures/_bad/ --snudda_data /home/hjorth/HBP/2024-10-03/BasalGangliaData/data/ | ||
|
||
python plot_bad.py networks/input_tuning_ispn_cortical_signal_10Hz/ networks/input_tuning_ispn_cortical_signal_10Hz/figures/_bad --snudda_data /home/hjorth/HBP/2024-10-03/BasalGangliaData/data/ | ||
|
||
python plot_bad.py networks/input_tuning_fs_cortical_signal_10Hz/ networks/input_tuning_fs_cortical_signal_10Hz/figures/_bad --snudda_data /home/hjorth/HBP/2024-10-03/BasalGangliaData/data/ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,247 @@ | ||
import os | ||
import glob | ||
import json | ||
import numpy as np | ||
from snudda.utils import snudda_parse_path | ||
import matplotlib.pyplot as plt | ||
|
||
|
||
class PlotBad: | ||
|
||
def __init__(self, network_path, figure_path, snudda_data=None): | ||
self.network_path = network_path | ||
self.figure_path = figure_path | ||
self.snudda_data = snudda_data | ||
self.meta = None | ||
self.parameters = None | ||
|
||
self.load_config(network_path) | ||
self.bad_key_list = self.get_keys_in_dir(figure_path) | ||
self.bad_param_list = [x[1] for x in self.bad_key_list] | ||
|
||
def get_keys_in_dir(self, path, file_extension=".png"): | ||
|
||
file_list = glob.glob(os.path.join(path, f"*{file_extension}")) | ||
|
||
key_list = [] | ||
|
||
for f in file_list: | ||
f_parts = os.path.basename(f).split("-") | ||
morph_key = f_parts[0] | ||
param_key = f_parts[1] | ||
|
||
key_list.append((morph_key, param_key)) | ||
|
||
return key_list | ||
|
||
def load_config(self, network_path): | ||
|
||
network_config_path = os.path.join(network_path, "network-config.json") | ||
|
||
with open(network_config_path, "r") as f: | ||
self.network_config = json.load(f) | ||
|
||
if self.snudda_data is None: | ||
self.snudda_data = self.network_config["snudda_data"] | ||
|
||
neuron_paths = [] | ||
|
||
for region_name, region_data in self.network_config["regions"].items(): | ||
for neuron_name, neuron_data in region_data["neurons"].items(): | ||
for name, path in neuron_data["neuron_path"].items(): | ||
neuron_paths.append(snudda_parse_path(path, self.snudda_data)) | ||
|
||
self.load_meta(neuron_paths) | ||
self.load_parameters(neuron_paths) | ||
self.extract_parameters() | ||
|
||
|
||
def load_meta(self, neuron_paths): | ||
|
||
all_meta = dict() | ||
read_meta_files = [] | ||
|
||
for neuron_path in neuron_paths: | ||
meta_file = os.path.join(neuron_path, "meta.json") | ||
|
||
if meta_file in read_meta_files: | ||
# Already loaded this meta.json file | ||
continue | ||
|
||
with open(meta_file, "r") as f: | ||
new_meta = json.load(f) | ||
read_meta_files.append(meta_file) | ||
|
||
for key in new_meta.keys(): | ||
if key in all_meta: | ||
raise KeyError("Parameter key {key} already exists!") | ||
|
||
all_meta |= new_meta | ||
|
||
self.meta = all_meta | ||
|
||
def load_parameters(self, neuron_paths): | ||
|
||
all_params = dict() | ||
read_param_files = [] | ||
|
||
for neuron_path in neuron_paths: | ||
param_file = os.path.join(neuron_path, "parameters.json") | ||
|
||
if param_file in read_param_files: | ||
# Already loaded the parameters.json | ||
continue | ||
|
||
with open(param_file, "r") as f: | ||
new_params = json.load(f) | ||
read_param_files.append(param_file) | ||
|
||
for key in new_params.keys(): | ||
if key in all_params: | ||
raise KeyError("Parameter key {key} already exists!") | ||
|
||
all_params |= new_params | ||
|
||
self.parameters = all_params | ||
|
||
def extract_parameters(self): | ||
|
||
self.params = dict() | ||
|
||
for param_key, param_list in self.parameters.items(): | ||
self.params[param_key] = dict() | ||
|
||
for param_data in param_list: | ||
if param_data["type"] == "global": | ||
continue | ||
|
||
try: | ||
param_name = param_data["param_name"] | ||
param_loc = param_data["sectionlist"] | ||
param_value = param_data["value"] | ||
except: | ||
import traceback | ||
print(traceback.format_exc()) | ||
import pdb | ||
pdb.set_trace() | ||
|
||
self.params[param_key][f"{param_name}_{param_loc}"] = param_value | ||
|
||
def get_param(self, param_name): | ||
|
||
par_val = [] | ||
par_status = [] | ||
|
||
for param_key, param_data in self.params.items(): | ||
if param_key in self.bad_param_list: | ||
status = 0 | ||
else: | ||
status = 1 | ||
|
||
if param_name in param_data: | ||
par_status.append(status) | ||
par_val.append(param_data[param_name]) | ||
else: | ||
print(f"{param_name = } missing for {param_key = }") | ||
|
||
return par_val, par_status | ||
|
||
def get_all_param_names(self): | ||
param_names = [] | ||
for par_key, par_data in self.params.items(): | ||
for par_name in par_data.keys(): | ||
param_names.append(par_name) | ||
|
||
return np.unique(param_names) | ||
|
||
def plot_params(self, param_name): | ||
|
||
param_val, param_status = self.get_param(param_name) | ||
color = [(0,0,0) if x == 1 else (1,0,0) for x in param_status] | ||
plt.figure() | ||
plt.scatter(param_status, param_val, c=color) | ||
plt.title(param_name) | ||
plt.ion() | ||
plt.show() | ||
fig_path = os.path.join(self.network_path, "figures", f"{param_name}-bad-summary.png") | ||
plt.savefig(fig_path) | ||
|
||
def summary_plot(self, normalise=True): | ||
param_names = self.get_all_param_names() | ||
|
||
plot_x = [] | ||
plot_y = [] | ||
|
||
plot_ctr = 0 | ||
|
||
label_x = [] | ||
label_str = [] | ||
spacing = 6 | ||
|
||
for param_name in param_names: | ||
|
||
param_val, param_status = self.get_param(param_name) | ||
|
||
if normalise: | ||
min_val = np.min(param_val) | ||
max_val = np.max(param_val) | ||
|
||
param_val = [(x-min_val)/(max_val-min_val) for x in param_val] | ||
|
||
if len(np.unique(param_val)) == 1: | ||
# All values same, skip. | ||
continue | ||
|
||
plot_x += [x+plot_ctr*spacing for x in param_status] | ||
plot_y += param_val | ||
|
||
label_x.append(plot_ctr*spacing) | ||
label_str.append(param_name) | ||
|
||
plot_ctr += 1 | ||
|
||
|
||
color = [(0,0,0) if x % 2 == 1 else (1,0,0) for x in plot_x] | ||
sizes = [5 if x % 2 == 1 else 20 for x in plot_x] | ||
|
||
plt.figure(figsize=(15,8)) | ||
plt.scatter(plot_x, plot_y, c=color, s=sizes) | ||
plt.xticks(label_x, label_str, rotation=90) | ||
plt.subplots_adjust(bottom=0.4) | ||
title_str = self.network_path | ||
if normalise: | ||
title_str += " (normalised values plotted)" | ||
plt.title(title_str) | ||
plt.ion() | ||
plt.show() | ||
|
||
fig_path = os.path.join(self.network_path, "figures", f"bad-summary.png") | ||
plt.savefig(fig_path) | ||
|
||
|
||
def plot(self): | ||
param_names = self.get_all_param_names() | ||
|
||
for pn in param_names: | ||
self.plot_params(pn) | ||
|
||
|
||
def cli(): | ||
|
||
import argparse | ||
parser = argparse.ArgumentParser(description="Investigate parameters for plots") | ||
parser.add_argument("network_path", help="Path to network folder") | ||
parser.add_argument("figure_path", help="Path to figure folder") | ||
parser.add_argument("--snudda_data", type=str, default=None) | ||
args = parser.parse_args() | ||
|
||
pb = PlotBad(network_path=args.network_path, figure_path=args.figure_path, | ||
snudda_data=args.snudda_data) | ||
# pb.plot() | ||
pb.summary_plot() | ||
|
||
|
||
|
||
if __name__ == "__main__": | ||
cli() | ||
input("Press a key to exit") |