Skip to content

Commit

Permalink
feat(examples): add example of langchain agent with tools (#268)
Browse files Browse the repository at this point in the history
  • Loading branch information
David-Kristek authored Jan 24, 2024
1 parent e45c8aa commit dd50776
Showing 1 changed file with 108 additions and 0 deletions.
108 changes: 108 additions & 0 deletions examples/extensions/langchain/langchain_agent.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
"""LangChain agent
The agent chooses a sequence of actions to respond to a human's question. It has access to a set of tools.
The agent memorizes the conversation history and can use it to make decisions.
"""

from typing import Optional

from dotenv import load_dotenv
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.agents.output_parsers import JSONAgentOutputParser
from langchain.memory import ConversationBufferMemory
from langchain.tools.render import render_text_description_and_args
from langchain_core.callbacks import CallbackManagerForToolRun
from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.runnables import RunnablePassthrough
from langchain_core.tools import BaseTool

from genai import Client, Credentials
from genai.extensions.langchain import LangChainChatInterface
from genai.text.generation import TextGenerationParameters

load_dotenv()


class WordLengthTool(BaseTool):
name = "GetWordLength"
description = "Returns the length of a word."

def _run(self, word: str, run_manager: Optional[CallbackManagerForToolRun] = None) -> int:
return len(word)


tools: list[BaseTool] = [WordLengthTool()]

system_prompt = """Respond to the human as helpfully and accurately as possible. You have access to the following tools:
{tools}
Use a json blob to specify a tool by providing an action key (tool name) and an action_input key (tool input).
Valid "action" values: "Final Answer" or {tool_names}
Provide only ONE action per $JSON_BLOB, as shown:
```
{{
"action": $TOOL_NAME,
"action_input": $INPUT
}}
```
Follow this format:
Question: input question to answer
Thought: consider previous and subsequent steps
Action:
```
$JSON_BLOB
```
Observation: action result
... (repeat Thought/Action/Observation N times)
Thought: I know what to respond
Action:
```
{{
"action": "Final Answer",
"action_input": "Final response to human"
}}
Begin! Reminder to ALWAYS respond with a valid json blob of a single action.
Respond directly if appropriate. Format is Action:```$JSON_BLOB```then Observation"""
human_prompt = """{input}
{agent_scratchpad}
(reminder to respond in a JSON blob no matter what)"""

prompt = ChatPromptTemplate.from_messages(
[
("system", system_prompt),
MessagesPlaceholder("chat_history", optional=True),
("human", human_prompt),
]
)

client = Client(credentials=Credentials.from_env())
llm = LangChainChatInterface(
client=client,
model_id="meta-llama/llama-2-70b-chat",
parameters=TextGenerationParameters(
max_new_tokens=250, min_new_tokens=20, temperature=0, stop_sequences=["\nObservation"]
),
)
prompt = prompt.partial(
# get tools with their descriptions and args in plain text
tools=render_text_description_and_args(list(tools)),
tool_names=", ".join([t.name for t in tools]),
)

memory = ConversationBufferMemory()

agent = (
RunnablePassthrough.assign(
# format the agent's scratchpad to a string
agent_scratchpad=lambda x: format_log_to_str(x["intermediate_steps"]),
# pass the memory as the chat history
chat_history=lambda x: memory.chat_memory.messages,
)
| prompt
| llm
| JSONAgentOutputParser()
)
agent_executor = AgentExecutor(agent=agent, tools=tools, handle_parsing_errors=True, verbose=True, memory=memory)

agent_executor.invoke({"input": "How many letters are in the word educa?"})
agent_executor.invoke({"input": "That's not a real word, can you tell me a valid word?"})

0 comments on commit dd50776

Please sign in to comment.