Skip to content

Prediction on lidar-prod optimization dataset #34

Prediction on lidar-prod optimization dataset

Prediction on lidar-prod optimization dataset #34

# Workflow name
name: "Prediction on lidar-prod optimization dataset"
on:
# Run workflow on user request
workflow_dispatch:
inputs:
user:
description: |
Username :
Utilisé pour générer un chemin standard pour les sorties dans le
dossier IA du store (projet-LHD/IA/MYRIA3D-SHARED-WORKSPACE/$USER/$SAMPLING_NAME/)
required: true
sampling_name:
description: |
Sampling name :
Nom du dataset sur lequel le modèle a été entraîné.
Utilisé pour générer un chemin standard pour les sorties dans le
dossier IA du store (projet-LHD/IA/MYRIA3D-SHARED-WORKSPACE/$USER/$SAMPLING_NAME/)
Eg. YYYYMMDD_MonBeauDataset
required: true
model_id:
description: |
Identifiant du modèle :
Il correspond au nom du fichier checkpoint à utiliser pour les prédictions (sans l'extension .ckpt !)
($MODEL_ID.ckpt doit exister dans projet-LHD/IA/MYRIA3D-SHARED-WORKSPACE/$USER/$SAMPLING_NAME/)
Il est aussi utilisé pour générer le dossier de sortie
(projet-LHD/IA/LIDAR-PROD-OPTIMIZATION/$SAMPLING_NAME/$MODEL_ID)
Exemple : YYYMMDD_MonBeauSampling_epochXXX_Myria3Dx.y.z
required: true
predict_config_name:
description: |
Nom du fichier de config de myria3d (fichier .yaml) à utiliser pour la prédiction
(doit exister dans projet-LHD/IA/MYRIA3D-SHARED-WORKSPACE/$USER/$SAMPLING_NAME/)
Exemple: YYYMMDD_MonBeauSampling_epochXXX_Myria3Dx.y.z_predict_config_Vx.y.z.yaml
required: true
jobs:
predict-validation-dataset:
runs-on: self-hosted
env:
OUTPUT_DIR: /var/data/LIDAR-PROD-OPTIMIZATION/${{ github.event.inputs.sampling_name }}/${{ github.event.inputs.model_id }}/
DATA: /var/data/LIDAR-PROD-OPTIMIZATION/20221018_lidar-prod-optimization-on-151-proto/Comparison/
CONFIG_DIR: /var/data/MYRIA3D-SHARED-WORKSPACE/${{ github.event.inputs.user }}/${{ github.event.inputs.sampling_name }}/
BATCH_SIZE: 25
steps:
- name: Log configuration
run: |
echo "Run prediction on lidar-prod optimization datasets (val and test)"
echo "Sampling name: ${{ github.event.inputs.sampling_name }}"
echo "User name: ${{ github.event.inputs.user }}"
echo "Checkpoint name: ${{ github.event.inputs.model_id }}"
echo "Prediction config name: ${{ github.event.inputs.predict_config_name }}"
echo "Output_dir: ${{env.OUTPUT_DIR}}"
echo "Data: ${{env.DATA}}"
echo "Config files dir: ${{env.CONFIG_DIR}}"
- name: Checkout branch
uses: actions/checkout@v4
# get version number, to retrieve the docker image corresponding to the current version
- name: Get version number
run: |
echo "VERSION=$(docker run myria3d python -m myria3d._version)" >> $GITHUB_ENV
- name: pull docker image tagged with current version
run: |
docker login ${{ secrets.DOCKER_REGISTRY }} --username svc_lidarhd --password ${{ secrets.PASSWORD_SVC_LIDARHD }}
docker pull ${{ secrets.DOCKER_REGISTRY }}/lidar_hd/myria3d:${{ env.VERSION }}
- name: Run prediction on validation dataset
run: >
docker run --network host
--shm-size='28g'
-v ${{env.OUTPUT_DIR}}:/output_dir
-v ${{env.DATA}}:/data
-v ${{env.CONFIG_DIR}}:/config_dir
${{ secrets.DOCKER_REGISTRY }}/lidar_hd/myria3d:${{ env.VERSION }}
python run.py
--config-path /config_dir
--config-name ${{ github.event.inputs.predict_config_name }}
task.task_name=predict
predict.src_las=/data/val/*.laz
predict.ckpt_path=/config_dir/${{ github.event.inputs.model_id }}.ckpt
predict.output_dir=/output_dir/preds-valset/
predict.interpolator.probas_to_save=[building]
predict.gpus=0
datamodule.batch_size=${{env.BATCH_SIZE}}
datamodule.tile_width=1000
- name: Run prediction on test dataset
run: >
docker run --network host
--shm-size='28g'
-v ${{env.OUTPUT_DIR}}:/output_dir
-v ${{env.DATA}}:/data
-v ${{env.CONFIG_DIR}}:/config_dir
${{ secrets.DOCKER_REGISTRY }}/lidar_hd/myria3d:${{ env.VERSION }}
python run.py
--config-path /config_dir
--config-name ${{ github.event.inputs.predict_config_name }}
task.task_name=predict
predict.src_las=/data/test/*.laz
predict.ckpt_path=/config_dir/${{ github.event.inputs.model_id }}.ckpt
predict.output_dir=/output_dir/preds-testset/
predict.interpolator.probas_to_save=[building]
predict.gpus=0
datamodule.batch_size=${{env.BATCH_SIZE}}
datamodule.tile_width=1000