Prediction on lidar-prod optimization dataset #34
Workflow file for this run
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
# Workflow name | |
name: "Prediction on lidar-prod optimization dataset" | |
on: | |
# Run workflow on user request | |
workflow_dispatch: | |
inputs: | |
user: | |
description: | | |
Username : | |
Utilisé pour générer un chemin standard pour les sorties dans le | |
dossier IA du store (projet-LHD/IA/MYRIA3D-SHARED-WORKSPACE/$USER/$SAMPLING_NAME/) | |
required: true | |
sampling_name: | |
description: | | |
Sampling name : | |
Nom du dataset sur lequel le modèle a été entraîné. | |
Utilisé pour générer un chemin standard pour les sorties dans le | |
dossier IA du store (projet-LHD/IA/MYRIA3D-SHARED-WORKSPACE/$USER/$SAMPLING_NAME/) | |
Eg. YYYYMMDD_MonBeauDataset | |
required: true | |
model_id: | |
description: | | |
Identifiant du modèle : | |
Il correspond au nom du fichier checkpoint à utiliser pour les prédictions (sans l'extension .ckpt !) | |
($MODEL_ID.ckpt doit exister dans projet-LHD/IA/MYRIA3D-SHARED-WORKSPACE/$USER/$SAMPLING_NAME/) | |
Il est aussi utilisé pour générer le dossier de sortie | |
(projet-LHD/IA/LIDAR-PROD-OPTIMIZATION/$SAMPLING_NAME/$MODEL_ID) | |
Exemple : YYYMMDD_MonBeauSampling_epochXXX_Myria3Dx.y.z | |
required: true | |
predict_config_name: | |
description: | | |
Nom du fichier de config de myria3d (fichier .yaml) à utiliser pour la prédiction | |
(doit exister dans projet-LHD/IA/MYRIA3D-SHARED-WORKSPACE/$USER/$SAMPLING_NAME/) | |
Exemple: YYYMMDD_MonBeauSampling_epochXXX_Myria3Dx.y.z_predict_config_Vx.y.z.yaml | |
required: true | |
jobs: | |
predict-validation-dataset: | |
runs-on: self-hosted | |
env: | |
OUTPUT_DIR: /var/data/LIDAR-PROD-OPTIMIZATION/${{ github.event.inputs.sampling_name }}/${{ github.event.inputs.model_id }}/ | |
DATA: /var/data/LIDAR-PROD-OPTIMIZATION/20221018_lidar-prod-optimization-on-151-proto/Comparison/ | |
CONFIG_DIR: /var/data/MYRIA3D-SHARED-WORKSPACE/${{ github.event.inputs.user }}/${{ github.event.inputs.sampling_name }}/ | |
BATCH_SIZE: 25 | |
steps: | |
- name: Log configuration | |
run: | | |
echo "Run prediction on lidar-prod optimization datasets (val and test)" | |
echo "Sampling name: ${{ github.event.inputs.sampling_name }}" | |
echo "User name: ${{ github.event.inputs.user }}" | |
echo "Checkpoint name: ${{ github.event.inputs.model_id }}" | |
echo "Prediction config name: ${{ github.event.inputs.predict_config_name }}" | |
echo "Output_dir: ${{env.OUTPUT_DIR}}" | |
echo "Data: ${{env.DATA}}" | |
echo "Config files dir: ${{env.CONFIG_DIR}}" | |
- name: Checkout branch | |
uses: actions/checkout@v4 | |
# get version number, to retrieve the docker image corresponding to the current version | |
- name: Get version number | |
run: | | |
echo "VERSION=$(docker run myria3d python -m myria3d._version)" >> $GITHUB_ENV | |
- name: pull docker image tagged with current version | |
run: | | |
docker login ${{ secrets.DOCKER_REGISTRY }} --username svc_lidarhd --password ${{ secrets.PASSWORD_SVC_LIDARHD }} | |
docker pull ${{ secrets.DOCKER_REGISTRY }}/lidar_hd/myria3d:${{ env.VERSION }} | |
- name: Run prediction on validation dataset | |
run: > | |
docker run --network host | |
--shm-size='28g' | |
-v ${{env.OUTPUT_DIR}}:/output_dir | |
-v ${{env.DATA}}:/data | |
-v ${{env.CONFIG_DIR}}:/config_dir | |
${{ secrets.DOCKER_REGISTRY }}/lidar_hd/myria3d:${{ env.VERSION }} | |
python run.py | |
--config-path /config_dir | |
--config-name ${{ github.event.inputs.predict_config_name }} | |
task.task_name=predict | |
predict.src_las=/data/val/*.laz | |
predict.ckpt_path=/config_dir/${{ github.event.inputs.model_id }}.ckpt | |
predict.output_dir=/output_dir/preds-valset/ | |
predict.interpolator.probas_to_save=[building] | |
predict.gpus=0 | |
datamodule.batch_size=${{env.BATCH_SIZE}} | |
datamodule.tile_width=1000 | |
- name: Run prediction on test dataset | |
run: > | |
docker run --network host | |
--shm-size='28g' | |
-v ${{env.OUTPUT_DIR}}:/output_dir | |
-v ${{env.DATA}}:/data | |
-v ${{env.CONFIG_DIR}}:/config_dir | |
${{ secrets.DOCKER_REGISTRY }}/lidar_hd/myria3d:${{ env.VERSION }} | |
python run.py | |
--config-path /config_dir | |
--config-name ${{ github.event.inputs.predict_config_name }} | |
task.task_name=predict | |
predict.src_las=/data/test/*.laz | |
predict.ckpt_path=/config_dir/${{ github.event.inputs.model_id }}.ckpt | |
predict.output_dir=/output_dir/preds-testset/ | |
predict.interpolator.probas_to_save=[building] | |
predict.gpus=0 | |
datamodule.batch_size=${{env.BATCH_SIZE}} | |
datamodule.tile_width=1000 |