-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Peter Shobowale
committed
Feb 24, 2025
1 parent
384b2b5
commit 4b83afa
Showing
65 changed files
with
12,071 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
# Byte-compiled / optimized / DLL files | ||
__pycache__/ | ||
*.py[cod] | ||
*$py.class | ||
src/* | ||
dependencies/*/ | ||
dependencies/*.sh | ||
rendering/*.* | ||
pointcloud/*.* | ||
# C extensions | ||
*.so | ||
*.ply | ||
|
||
# Distribution / packaging | ||
.Python | ||
build/ | ||
develop-eggs/ | ||
dist/ | ||
downloads/ | ||
eggs/ | ||
.eggs/ | ||
lib/ | ||
lib64/ | ||
parts/ | ||
sdist/ | ||
var/ | ||
wheels/ | ||
*.egg-info/ | ||
.installed.cfg | ||
*.egg | ||
|
||
# PyInstaller | ||
# Usually these files are written by a python script from a template | ||
# before PyInstaller builds the exe, so as to inject date/other infos into it. | ||
*.manifest | ||
*.spec | ||
|
||
# Installer logs | ||
pip-log.txt | ||
pip-delete-this-directory.txt | ||
|
||
# Unit test / coverage reports | ||
htmlcov/ | ||
.tox/ | ||
.coverage | ||
.coverage.* | ||
.cache | ||
nosetests.xml | ||
coverage.xml | ||
*.cover | ||
.hypothesis/ | ||
.pytest_cache/ | ||
|
||
# Translations | ||
*.mo | ||
*.pot | ||
|
||
# Django stuff: | ||
*.log | ||
local_settings.py | ||
|
||
# Flask stuff: | ||
instance/ | ||
.webassets-cache | ||
|
||
# Scrapy stuff: | ||
.scrapy | ||
|
||
# Sphinx documentation | ||
docs/_build/ | ||
|
||
# PyBuilder | ||
target/ | ||
|
||
# Jupyter Notebook | ||
.ipynb_checkpoints | ||
|
||
# pyenv | ||
.python-version | ||
|
||
# celery beat schedule file | ||
celerybeat-schedule | ||
|
||
# SageMath parsed files | ||
*.sage.py | ||
|
||
# Environments | ||
.env | ||
.venv | ||
env/ | ||
venv/ | ||
ENV/ | ||
|
||
# Spyder project settings | ||
.spyderproject | ||
.spyproject | ||
|
||
# Rope project settings | ||
.ropeproject | ||
|
||
# mkdocs documentation | ||
/site | ||
|
||
# mypy | ||
.mypy_cache/ | ||
|
||
# PyCharm | ||
.idea/ | ||
|
||
# 2to3 backup files | ||
*.bak | ||
|
||
# eclipse | ||
.project | ||
.pydevproject | ||
.settings/* | ||
|
||
# h5 files used in bv/imageStack.py | ||
*.h5 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
*.csv |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,269 @@ | ||
import numpy as np | ||
import cv2 | ||
import glob | ||
import matplotlib.pyplot as plt | ||
import open3d as o3d | ||
import concurrent.futures | ||
import sys | ||
|
||
|
||
def get_files(path="../pointcloud", rotation=None, num_rotations=1): | ||
# Get file paths for reflection images, point clouds, and transformation matrices | ||
reflection_files = sorted(glob.glob(f"{path}**/Cam*.png")) | ||
depth_files = sorted(glob.glob(f"{path}**/Depth*.png")) | ||
height_map_files = sorted(glob.glob(f"{path}**/HeightMap*.png")) # HeightMap files | ||
point_cloud_files = sorted(glob.glob(f"{path}**/*.ply")) | ||
transformation_file = sorted(glob.glob(f"{path}/values.csv"))[0] | ||
backup_file = sorted(glob.glob(f"{path}/features.csv")) | ||
|
||
# Load transformation matrices | ||
transformations = np.genfromtxt(transformation_file, delimiter=";", dtype=float) | ||
transformations = [np.reshape(T, (4, 4)) for T in transformations] | ||
|
||
# Load backup features if available | ||
backup = np.genfromtxt(backup_file[0], delimiter=";", dtype=float) if backup_file else None | ||
|
||
# Determine the maximum number of files to process | ||
max_count = min(len(height_map_files), len(reflection_files)) | ||
|
||
print(max_count) | ||
# Handle rotation and number of rotations | ||
if rotation is None: | ||
rotation = 0 | ||
else: | ||
rotation = int(rotation % num_rotations) | ||
|
||
# Return file paths and backup data (if available) | ||
if backup is not None and len(backup) == max_count: | ||
return (reflection_files[rotation:max_count:num_rotations], | ||
depth_files[rotation:max_count:num_rotations], | ||
height_map_files[rotation:max_count:num_rotations], | ||
point_cloud_files[rotation:max_count:num_rotations], | ||
transformations[rotation:max_count:num_rotations], | ||
backup) | ||
|
||
return (reflection_files[rotation:max_count:num_rotations], | ||
depth_files[rotation:max_count:num_rotations], | ||
height_map_files[rotation:max_count:num_rotations], | ||
point_cloud_files[rotation:max_count:num_rotations], | ||
transformations[rotation:max_count:num_rotations], | ||
None) | ||
|
||
|
||
def rotation_matrix_to_euler_angles(R): | ||
# Calculate Euler angles from rotation matrix | ||
sy = np.sqrt(R[0, 0]**2 + R[1, 0]**2) | ||
singular = sy < 1e-6 | ||
|
||
if not singular: | ||
x = np.arctan2(R[2, 1], R[2, 2]) | ||
y = np.arctan2(-R[2, 0], sy) | ||
z = np.arctan2(R[1, 0], R[0, 0]) | ||
else: | ||
x = np.arctan2(-R[1, 2], R[1, 1]) | ||
y = np.arctan2(-R[2, 0], sy) | ||
z = 0 | ||
|
||
return np.array([x, y, z]) | ||
|
||
|
||
def process_reflection(reflection_path, depth_path, height_map_path, point_cloud_path, transformation, index, scale, max_sensor_area, total_computations, read_pointcloud=False): | ||
# Read and normalize reflection image | ||
reflection = cv2.imread(reflection_path, -1) / scale | ||
depth = cv2.imread(depth_path, -1) | ||
reflection = depth>0 + reflection | ||
height_map = hm = cv2.imread(height_map_path, -1) # Load height map | ||
|
||
depth_middle = depth[depth.shape[0]//2,depth.shape[1]//2] | ||
hm_middle = hm[hm.shape[0]//2,hm.shape[1]//2] | ||
|
||
if hm_middle>0 and depth_middle>0: | ||
depth=depth/depth_middle | ||
height_map=hm/hm_middle | ||
else: | ||
depth=depth/255 | ||
height_map=hm/255 | ||
|
||
# Compute areas | ||
multireflection_area = np.sum(reflection > 1).astype(float) | ||
normal_reflection_area = np.sum(reflection == 1).astype(float) | ||
|
||
reconstructed_simulated_area = np.sum(height_map>0)/np.sum(depth>0) | ||
# Calculate clean ratio | ||
clean_ratio = normal_reflection_area / (multireflection_area + normal_reflection_area) | ||
|
||
|
||
reconstructed_area=np.sum(depth>0) | ||
if reconstructed_area>100: | ||
diff=np.abs(height_map-depth) | ||
diff[height_map==0]=0 | ||
height_map_ratio = np.mean(diff) # Compute some ratio from height map | ||
else: | ||
height_map_ratio=1 | ||
|
||
features = ( | ||
index, | ||
clean_ratio, | ||
normal_reflection_area / max_sensor_area, | ||
(normal_reflection_area + multireflection_area) / max_sensor_area, | ||
reconstructed_simulated_area, | ||
height_map_ratio # Include height map ratio | ||
) | ||
|
||
print(f"\x1b[2K\r {index + 1}/{total_computations}", end="") | ||
return features | ||
|
||
|
||
def extract_features(reflection_paths, depth_paths, height_map_paths, point_cloud_paths, transformations, backup, path, threaded=True): | ||
# Read the first reflection image to determine the scale | ||
first_image = cv2.imread(reflection_paths[0], -1) | ||
scale = np.unique(first_image)[1] | ||
max_sensor_area = int(first_image.shape[0] * first_image.shape[1]) | ||
features = [] | ||
|
||
if backup is None: | ||
print("Creating features from data") | ||
if not threaded: | ||
# Process reflections sequentially | ||
for index, (reflection_path, depth_path, height_map_path, point_cloud_path, transformation) in enumerate(zip(reflection_paths, depth_paths, height_map_paths, point_cloud_paths, transformations)): | ||
features.append(process_reflection(reflection_path, depth_path, height_map_path, point_cloud_path, transformation, index, scale, max_sensor_area, len(reflection_paths))) | ||
else: | ||
# Process reflections in parallel | ||
with concurrent.futures.ThreadPoolExecutor() as executor: | ||
futures = [ | ||
executor.submit(process_reflection, reflection_path, depth_path, height_map_path, point_cloud_path, transformation, index, scale, max_sensor_area, len(reflection_paths)) | ||
for index, (reflection_path, depth_path, height_map_path, point_cloud_path, transformation) in enumerate(zip(reflection_paths, depth_paths, height_map_paths, point_cloud_paths, transformations)) | ||
] | ||
for future in concurrent.futures.as_completed(futures): | ||
features.append(future.result()) | ||
|
||
features = np.array(features) | ||
np.savetxt(f"{path}/features.csv", features, delimiter=";", fmt="%32.32f") | ||
else: | ||
print("Loaded features from file") | ||
features = backup | ||
|
||
return features | ||
|
||
|
||
def show_poses(points, features, mesh_path=None): | ||
print(f"Showing Poses - min: {np.min(features)} - max: {np.max(features)} Value of feature") | ||
features = np.array(features) | ||
norm_features = (features - np.min(features)) / (np.max(features) - np.min(features)) | ||
|
||
# Create a dictionary to store the highest feature value for each point | ||
unique_points = {} | ||
for point, feature in zip(points, norm_features): | ||
point_tuple = tuple(point) | ||
if point_tuple not in unique_points or unique_points[point_tuple] < feature: | ||
unique_points[point_tuple] = feature | ||
|
||
# Extract the points and features with the highest feature values | ||
points = np.array([point for point in unique_points.keys()]) | ||
features = np.array([unique_points[point] for point in unique_points.keys()]) | ||
|
||
point_cloud = o3d.geometry.PointCloud() | ||
point_cloud.points = o3d.utility.Vector3dVector(points) | ||
colors = plt.get_cmap("cool")(features)[:, :3] | ||
point_cloud.colors = o3d.utility.Vector3dVector(colors) | ||
|
||
# Visualize the point cloud with bigger points | ||
vis = o3d.visualization.Visualizer() | ||
vis.create_window() | ||
vis.add_geometry(point_cloud) | ||
if mesh_path is not None: | ||
mesh = o3d.io.read_triangle_mesh(mesh_path) | ||
vis.add_geometry(mesh) | ||
|
||
# Change the render option to make the points bigger | ||
render_option = vis.get_render_option() | ||
render_option.point_size = 15.0 | ||
|
||
# Enable shading | ||
render_option.mesh_shade_option = o3d.visualization.MeshShadeOption.Color | ||
vis.run() | ||
vis.destroy_window() | ||
|
||
|
||
if __name__ == "__main__": | ||
# Take first argument in the cli command as path string if available | ||
path = sys.argv[1] if len(sys.argv) > 1 else "../pointcloud" | ||
|
||
reflection_paths, depth_paths, height_map_paths, point_cloud_paths, transformations, backup = get_files(path) | ||
|
||
features = extract_features(reflection_paths, depth_paths, height_map_paths, point_cloud_paths, transformations, backup, path) | ||
|
||
#sort features by features[-2]:= Reconstructed/Visible | ||
points = [np.reshape(T, (4, 4))[:3, 3] for T in transformations] | ||
combined = list(zip(features, points)) | ||
combined = sorted(combined, key=lambda x: x[0][-1], reverse=True) | ||
|
||
# Extract the sorted transformations | ||
points = [np.array(item[1]) for item in combined] | ||
features = [item[0] for item in combined] | ||
|
||
first_image = cv2.imread(reflection_paths[0], -1) | ||
scale = np.unique(first_image)[1] | ||
|
||
clean_reflection_ratio = [feature[1] for feature in features] | ||
clean_total_ratio = [feature[2] for feature in features] | ||
height_map_ratio = [feature[-1] for feature in features] | ||
|
||
plt.plot(height_map_ratio,clean_total_ratio,".") | ||
plt.xlabel("Average Probing Error") | ||
plt.ylabel("Completness") | ||
plt.show() | ||
|
||
# Show Poses | ||
show_poses(points[:], clean_total_ratio[:], mesh_path="../pyrefloid/res/data/cad.stl") | ||
|
||
# Show Histograms | ||
plt.subplot(121) | ||
plt.xlabel("Points without Multireflection vs all Points") | ||
plt.hist(clean_reflection_ratio, int(np.sqrt(len(clean_reflection_ratio)))) | ||
plt.subplot(122) | ||
plt.xlabel("Points without Multireflection vs Sensor Area") | ||
plt.hist(clean_total_ratio, int(np.sqrt(len(clean_total_ratio)))) | ||
plt.show() | ||
|
||
# Show best reflections | ||
for index, clean_reflected_ratio, clean_total_ratio, reflected_total_area, simulated_reflected_area, height_map_ratio in features[::]: | ||
|
||
reflection = cv2.imread(reflection_paths[int(index)], -1) / scale | ||
|
||
depth = cv2.imread(depth_paths[int(index)], -1) / 255 | ||
hm = cv2.imread(height_map_paths[int(index)], -1) / 255 | ||
|
||
depth_middle = depth[depth.shape[0]//2,depth.shape[1]//2] | ||
hm_middle = hm[hm.shape[0]//2,hm.shape[1]//2] | ||
|
||
if hm_middle>0 and depth_middle>0: | ||
depth=depth/depth_middle | ||
hm=hm/hm_middle | ||
else: | ||
depth=depth/255 | ||
hm=hm/255 | ||
|
||
print(hm[hm.shape[0]//2,hm.shape[1]//2],depth[depth.shape[0]//2,depth.shape[1]//2]) | ||
|
||
print(f"{int(index)}\t-\t Clean/Reflected: {clean_reflected_ratio:3.3f}\tClean/Area: {clean_total_ratio:3.5f}\tReflected/Area: {reflected_total_area:3.3f}\tReconstructed/Visible: {simulated_reflected_area}\t Average Difference Sim: {height_map_ratio:3.3f}") | ||
|
||
plt.figure("10 best poses (descending)") | ||
ax=plt.subplot(221) | ||
plt.title("Depthmap") | ||
plt.imshow(depth,cmap="turbo") | ||
plt.colorbar() | ||
plt.subplot(222,sharex=ax,sharey=ax) | ||
plt.title("Simulated Reconstruction") | ||
plt.imshow(hm,cmap="turbo") | ||
plt.subplot(223,sharex=ax,sharey=ax) | ||
plt.title("Difference Reconstruction/GT") | ||
diff=depth-hm | ||
diff[hm==0]=0 | ||
plt.imshow(diff,cmap="turbo") | ||
plt.colorbar() | ||
plt.subplot(224,sharex=ax,sharey=ax) | ||
plt.title("Mutlireflections") | ||
plt.imshow(reflection,cmap="turbo") | ||
plt.colorbar() | ||
plt.show() |
Binary file not shown.
Oops, something went wrong.