Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

docs: add examples, citation and other fixes #34

Merged
merged 8 commits into from
Oct 22, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 18 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
# TikTok

[![DOI](https://zenodo.org/badge/852515176.svg)](https://doi.org/10.5281/zenodo.13968316)

TikTok is a Python library for interacting with the TikTok Research API.

This library provides a simple and efficient way to access TikTok's API endpoints,
Expand All @@ -17,7 +19,7 @@ of the Auth class with your API key and secret:

```python
from TikTok.Auth import OAuth2
from TikTok.Types.OAuth2 import RequestHeadersModel, TokenRequestBodyModel
from TikTok.ValidationModels.OAuth2 import RequestHeadersModel, TokenRequestBodyModel
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

💡 Codebase verification

Incomplete Refactoring: Old Import Path Detected in TikTok/Auth.py

The import statement from TikTok.Types.OAuth2 import RequestHeadersModel, TokenRequestBodyModel remains in TikTok/Auth.py, indicating that the refactoring to TikTok.ValidationModels.OAuth2 is incomplete.

  • File requiring update:
    • TikTok/Auth.py
🔗 Analysis chain

Import path modification: Approved with verification recommendation.

The alteration of the import path from TikTok.Types.OAuth2 to TikTok.ValidationModels.OAuth2 for RequestHeadersModel and TokenRequestBodyModel is logically sound and maintains consistency with observed changes in TikTok/__init__.py. This modification reflects a deliberate restructuring of the module organization.

To ensure comprehensive implementation of this structural change, execute the following verification script:

🏁 Scripts executed

The following scripts were executed for the analysis:

Script:

#!/bin/bash
# Description: Verify the updated import path usage across the codebase.

# Test: Search for any remaining instances of the old import path.
rg -i "from TikTok.Types.OAuth2 import RequestHeadersModel, TokenRequestBodyModel"

# Test: Confirm the presence of the new import path in relevant files.
rg -i "from TikTok.ValidationModels.OAuth2 import RequestHeadersModel, TokenRequestBodyModel"

Length of output: 708


auth: OAuth2 = await OAuth2.authenticate(
headers=RequestHeadersModel(),
Expand Down Expand Up @@ -85,3 +87,18 @@ video_query_response = await query.video.search(
```

If you are interested in learning more about the underlying API, you can find the documentation here: [https://developers.tiktok.com/doc/research-api-specs-query-videos](https://developers.tiktok.com/doc/research-api-specs-query-videos)

# Citation

If you use this library in your work, please cite it as follows:

```
@misc{teles_tiktok_sdk_2024,
author = {Alexandre Teles},
title = {{TikTok Research API SDK}},
year = 2024,
doi = {10.5281/zenodo.13968316},
url = {https://github.com/INCT-DD/tiktok-sdk},
institution = {Instituto Nacional de Ciência e Tecnologia em Democracia Digital},
}
```
16 changes: 15 additions & 1 deletion TikTok/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
"""
[![DOI](https://zenodo.org/badge/852515176.svg)](https://doi.org/10.5281/zenodo.13968316)

TikTok is a Python library for interacting with the TikTok Research API.

This library provides a simple and efficient way to access TikTok's API endpoints,
Expand All @@ -16,7 +18,7 @@

```python
from TikTok.Auth import OAuth2
from TikTok.Types.OAuth2 import RequestHeadersModel, TokenRequestBodyModel
from TikTok.ValidationModels.OAuth2 import RequestHeadersModel, TokenRequestBodyModel

auth: OAuth2 = await OAuth2.authenticate(
headers=RequestHeadersModel(),
Expand Down Expand Up @@ -85,4 +87,16 @@

If you are interested in learning more about the underlying API, you can find the documentation here: [https://developers.tiktok.com/doc/research-api-specs-query-videos](https://developers.tiktok.com/doc/research-api-specs-query-videos)

And if you use this library in your work, please cite it as follows:

```
@misc{teles_tiktok_sdk_2024,
author = {Alexandre Teles},
title = {{TikTok Research API SDK}},
year = 2024,
doi = {10.5281/zenodo.13968316},
url = {https://github.com/INCT-DD/tiktok-sdk},
institution = {Instituto Nacional de Ciência e Tecnologia em Democracia Digital},
}
```
"""
289 changes: 289 additions & 0 deletions examples/GetAllUserVideos.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,289 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Currently, the TikTok Research API has an issue where, if you have a large number of videos to fetch, you need to make multiple requests to get all the videos and you can only fetch 100 videos for each day. For that reason, we recommend you create a list of dates and make a request for each date. For more information, please check this issue: https://github.com/INCT-DD/tiktok-sdk/issues/27"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from datetime import datetime, timedelta\n",
"\n",
"\n",
"def generate_date_list(start_date: str, end_date: str) -> list[str]:\n",
" \"\"\"\n",
" Generate a list of dates between two dates, inclusive.\n",
"\n",
" Args:\n",
" start_date (str): The start date as a string in \"YYYYMMDD\" format.\n",
" end_date (str): The end date as a string in \"YYYYMMDD\" format.\n",
"\n",
" Returns:\n",
" list of str: A list containing all dates from the start date to the end date,\n",
" inclusive, each formatted as \"YYYYMMDD\".\n",
"\n",
" Raises:\n",
" ValueError: If the input date strings are not in the correct format or if\n",
" the start date occurs after the end date.\n",
"\n",
" Example:\n",
" >>> generate_date_list(\"20240811\", \"20240815\")\n",
" ['20240811', '20240812', '20240813', '20240814', '20240815']\n",
" \"\"\"\n",
" date_format = \"%Y%m%d\"\n",
" start_date = datetime.strptime(start_date, date_format)\n",
" end_date = datetime.strptime(end_date, date_format)\n",
" delta = end_date - start_date\n",
" return [\n",
" (start_date + timedelta(days=i)).strftime(date_format)\n",
" for i in range(delta.days + 1)\n",
" ]\n",
"\n",
"\n",
"start = \"20240816\"\n",
"end = \"20241003\"\n",
"\n",
"dates = generate_date_list(start, end)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We recommend you store your client key and secret in the environment variables and call them here."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from os import environ\n",
"from TikTok.Query import Query\n",
"from TikTok.Auth import OAuth2\n",
"from TikTok.ValidationModels.OAuth2 import RequestHeadersModel, TokenRequestBodyModel\n",
"\n",
"auth: OAuth2 = await OAuth2.authenticate(\n",
" headers=RequestHeadersModel(),\n",
" body=TokenRequestBodyModel(\n",
" client_key=environ[\"CLIENT_KEY\"],\n",
" client_secret=environ[\"CLIENT_SECRET\"],\n",
" ),\n",
")\n",
"\n",
"query = Query(auth)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The library uses tenacity to handle retries, but you can also implement your own retry logic as seen below."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from TikTok.ValidationModels.Video import (\n",
" VideoQueryRequestBuilder,\n",
" VideoQueryOperation,\n",
" VideoQueryFieldName,\n",
" VideoQueryFields,\n",
" VideoQueryResponseModel,\n",
")\n",
"import asyncio\n",
"from tqdm import tqdm\n",
"\n",
"\n",
"async def fetch_videos(\n",
" username: str, date_list: list[str], max_retries: int = 3\n",
") -> list[VideoQueryResponseModel]:\n",
" \"\"\"\n",
" Fetches videos for a given username over multiple dates, with a progress bar and retry logic.\n",
"\n",
" Args:\n",
" username (str): The TikTok username to query.\n",
" date_list (list): A list of date strings in \"YYYYMMDD\" format where each date\n",
" serves as both the start and end date for the query.\n",
" max_retries (int): Maximum number of retries for failed API calls.\n",
"\n",
" Returns:\n",
" list: A list containing all fetched VideoQueryResponseModel instances.\n",
" \"\"\"\n",
" all_videos = []\n",
"\n",
" for date in tqdm(date_list, desc=\"Processing Dates\", unit=\"date\"):\n",
" video_query = VideoQueryRequestBuilder()\n",
"\n",
" initial_request = (\n",
" video_query.start_date(date)\n",
" .end_date(date)\n",
" .max_count(100)\n",
" .and_(VideoQueryOperation.EQ, VideoQueryFieldName.username, [username])\n",
" .build()\n",
" )\n",
"\n",
" current_request = initial_request.model_copy()\n",
" has_more = True\n",
" retries = 0\n",
"\n",
" while has_more:\n",
" try:\n",
" video_query_response = await query.video.search(\n",
" request=current_request,\n",
" fields=[\n",
" VideoQueryFields.id,\n",
" VideoQueryFields.video_description,\n",
" VideoQueryFields.create_time,\n",
" VideoQueryFields.region_code,\n",
" VideoQueryFields.share_count,\n",
" VideoQueryFields.view_count,\n",
" VideoQueryFields.like_count,\n",
" VideoQueryFields.comment_count,\n",
" VideoQueryFields.music_id,\n",
" VideoQueryFields.hashtag_names,\n",
" VideoQueryFields.username,\n",
" VideoQueryFields.effect_ids,\n",
" VideoQueryFields.playlist_id,\n",
" VideoQueryFields.favorites_count,\n",
" ],\n",
" )\n",
" except Exception as e:\n",
" retries += 1\n",
" if retries > max_retries:\n",
" break\n",
" await asyncio.sleep(2**retries) # Exponential backoff\n",
" continue\n",
"\n",
" retries = 0\n",
"\n",
" if hasattr(video_query_response.data, \"videos\"):\n",
" all_videos.extend(video_query_response.data.videos)\n",
"\n",
" has_more = getattr(video_query_response.data, \"has_more\", False)\n",
"\n",
" if has_more:\n",
" cursor = getattr(video_query_response.data, \"cursor\", \"\")\n",
" search_id = getattr(video_query_response.data, \"search_id\", \"\")\n",
" if not cursor or not search_id:\n",
" break\n",
"\n",
" video_query = VideoQueryRequestBuilder()\n",
" current_request = (\n",
" video_query.start_date(date)\n",
" .end_date(date)\n",
" .max_count(100)\n",
" .and_(\n",
" VideoQueryOperation.EQ, VideoQueryFieldName.username, [username]\n",
" )\n",
" .cursor(cursor)\n",
" .search_id(search_id)\n",
" .build()\n",
" )\n",
"\n",
" return all_videos\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"If you want to fetch videos from multiple users, you can do it as follows:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"async def fetch_videos_for_usernames(\n",
" usernames: list[str], date_list: list[str], max_retries: int = 3\n",
") -> list[VideoQueryResponseModel]:\n",
" \"\"\"\n",
" Fetches videos for multiple usernames over multiple dates, with nested progress bars.\n",
"\n",
" Args:\n",
" usernames (list[str]): A list of TikTok usernames to query.\n",
" date_list (list[str]): A list of date strings in \"YYYYMMDD\" format where each date\n",
" serves as both the start and end date for the query.\n",
" max_retries (int): Maximum number of retries for failed API calls.\n",
"\n",
" Returns:\n",
" list: A list containing all fetched VideoQueryResponseModel instances from all usernames.\n",
" \"\"\"\n",
" all_videos = []\n",
"\n",
" for username in tqdm(usernames, desc=\"Processing Usernames\", unit=\"username\"):\n",
" print(f\"Processing: {username}\")\n",
" user_videos = await fetch_videos(username, date_list, max_retries)\n",
" all_videos.extend(user_videos)\n",
"\n",
" return all_videos\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Remember to replace the list of profiles with your own list of usernames.\n",
"videos = await fetch_videos_for_usernames(profiles, dates)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Once you have the list of videos, you can dump it to a dictionary. If you want to load it to a database, you can use the following code:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"df = pd.DataFrame.from_dict(\n",
" [video.model_dump(by_alias=True, exclude_none=True) for video in videos]\n",
")\n",
"\n",
"df.fillna(0, inplace=True) # Replace NaN with 0. Optional.\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "tiktokresearchapiwrapper-ZMj2YzQb-py3.12",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.3"
}
},
"nbformat": 4,
"nbformat_minor": 2
}