Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Beef up ring homomorphism to an algebra homomorphism task #218

Merged
merged 9 commits into from
Nov 17, 2024
21 changes: 16 additions & 5 deletions FLT/DedekindDomain/FiniteAdeleRing/BaseChange.lean
Original file line number Diff line number Diff line change
Expand Up @@ -169,13 +169,24 @@ noncomputable local instance (w : HeightOneSpectrum B) :
Algebra K (adicCompletion L w) := RingHom.toAlgebra <|
(algebraMap L (adicCompletion L w)).comp (algebraMap K L)


variable {B L} in
noncomputable def adicCompletion_comap_algHom (w : HeightOneSpectrum B) :
letI : Algebra K (adicCompletion L w) := RingHom.toAlgebra <|
(algebraMap L (adicCompletion L w)).comp (algebraMap K L);
letI : Module K (adicCompletion L w) := Algebra.toModule
(HeightOneSpectrum.adicCompletion K (comap A w)) →ₐ[K] (HeightOneSpectrum.adicCompletion L w) :=
sorry -- use `adicCompletion_comap_ringHom` and prove it's a K-algebra homomorphism
(HeightOneSpectrum.adicCompletion K (comap A w)) →ₐ[K]
(HeightOneSpectrum.adicCompletion L w) where
__ := adicCompletion_comap_ringHom A K w
commutes' r := by
simp only [RingHom.toMonoidHom_eq_coe, OneHom.toFun_eq_coe, MonoidHom.toOneHom_coe,
MonoidHom.coe_coe]
have : (adicCompletion_comap_ringHom A K w) (r : adicCompletion K (comap A w)) =
(algebraMap L (adicCompletion L w)) (algebraMap K L r) := by
letI : UniformSpace L := w.adicValued.toUniformSpace
letI : UniformSpace K := (comap A w).adicValued.toUniformSpace
rw [adicCompletion_comap_ringHom, UniformSpace.Completion.mapRingHom]
rw [show (r : adicCompletion K (comap A w)) = @UniformSpace.Completion.coe' K this r from rfl]
apply UniformSpace.Completion.extensionHom_coe
rw [this]
rfl

end IsDedekindDomain.HeightOneSpectrum

Expand Down