Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update test_umath.py #2367

Merged
merged 9 commits into from
Mar 26, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
103 changes: 37 additions & 66 deletions dpnp/tests/test_binary_ufuncs.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@

from .helper import (
assert_dtype_allclose,
generate_random_numpy_array,
get_abs_array,
get_all_dtypes,
get_complex_dtypes,
Expand All @@ -22,10 +23,6 @@
has_support_aspect16,
numpy_version,
)
from .test_umath import (
_get_numpy_arrays_2in_1out,
_get_output_data_type,
)

"""
The scope includes tests with only functions which are instances of
Expand All @@ -39,7 +36,9 @@ class TestAdd:

@pytest.mark.parametrize("dtype", ALL_DTYPES)
def test_add(self, dtype):
a, b, expected = _get_numpy_arrays_2in_1out("add", dtype, [-5, 5, 10])
a = generate_random_numpy_array(10, dtype)
b = generate_random_numpy_array(10, dtype)
expected = numpy.add(a, b)

ia, ib = dpnp.array(a), dpnp.array(b)
iout = dpnp.empty(expected.shape, dtype=dtype)
Expand Down Expand Up @@ -139,91 +138,63 @@ def test_invalid_out(self, xp, out):
assert_raises(TypeError, xp.add, a, 2, out)


@pytest.mark.parametrize("func", ["fmax", "fmin", "maximum", "minimum"])
class TestBoundFuncs:
@pytest.fixture(
params=[
{"func_name": "fmax", "input_values": [-5, 5, 10]},
{"func_name": "fmin", "input_values": [-5, 5, 10]},
{"func_name": "maximum", "input_values": [-5, 5, 10]},
{"func_name": "minimum", "input_values": [-5, 5, 10]},
],
ids=[
"fmax",
"fmin",
"maximum",
"minimum",
],
)
def func_params(self, request):
return request.param

@pytest.mark.parametrize(
"dtype", get_all_dtypes(no_bool=True, no_complex=True)
)
def test_out(self, func_params, dtype):
func_name = func_params["func_name"]
input_values = func_params["input_values"]
a, b, expected = _get_numpy_arrays_2in_1out(
func_name, dtype, input_values
)
@pytest.mark.parametrize("dtype", get_all_dtypes(no_none=True))
def test_out(self, func, dtype):
a = generate_random_numpy_array(10, dtype)
b = generate_random_numpy_array(10, dtype)
expected = getattr(numpy, func)(a, b)

ia, ib = dpnp.array(a), dpnp.array(b)
iout = dpnp.empty(expected.shape, dtype=dtype)
result = getattr(dpnp, func_name)(ia, ib, out=iout)
result = getattr(dpnp, func)(ia, ib, out=iout)

assert result is iout
assert_dtype_allclose(result, expected)

@pytest.mark.parametrize(
"dtype", get_all_dtypes(no_bool=True, no_complex=True)
"dtype", get_all_dtypes(no_none=True, no_bool=True)
)
def test_out_overlap(self, func_params, dtype):
func_name = func_params["func_name"]
def test_out_overlap(self, func, dtype):
size = 15
a = numpy.arange(2 * size, dtype=dtype)
ia = dpnp.array(a)

getattr(dpnp, func_name)(ia[size::], ia[::2], out=ia[:size:])
getattr(numpy, func_name)(a[size::], a[::2], out=a[:size:])
getattr(dpnp, func)(ia[size::], ia[::2], out=ia[:size:])
getattr(numpy, func)(a[size::], a[::2], out=a[:size:])

assert_dtype_allclose(ia, a)

@pytest.mark.parametrize("shape", [(0,), (15,), (2, 2)])
def test_invalid_shape(self, func_params, shape):
func_name = func_params["func_name"]
def test_invalid_shape(self, func, shape):
a, b = dpnp.arange(10), dpnp.arange(10)
out = dpnp.empty(shape)

with pytest.raises(ValueError):
getattr(dpnp, func_name)(a, b, out=out)
getattr(dpnp, func)(a, b, out=out)

@pytest.mark.parametrize("xp", [dpnp, numpy])
@pytest.mark.parametrize(
"out",
[4, (), [], (3, 7), [2, 4]],
ids=["scalar", "empty_tuple", "empty_list", "tuple", "list"],
)
def test_invalid_out(self, func_params, xp, out):
func_name = func_params["func_name"]
def test_invalid_out(self, func, xp, out):
a = xp.arange(10)
assert_raises(TypeError, getattr(xp, func_name), a, 2, out)
assert_raises(TypeError, getattr(xp, func), a, 2, out)


class TestDivide:
@pytest.mark.usefixtures("suppress_divide_invalid_numpy_warnings")
@pytest.mark.parametrize(
"dtype", get_all_dtypes(no_none=True, no_bool=True)
)
@pytest.mark.parametrize("dtype", get_all_dtypes(no_none=True))
def test_divide(self, dtype):
a, b, expected = _get_numpy_arrays_2in_1out(
"divide", dtype, [-5, 5, 10]
)
a = generate_random_numpy_array(10, dtype)
b = generate_random_numpy_array(10, dtype)
expected = numpy.divide(a, b)

ia, ib = dpnp.array(a), dpnp.array(b)
if numpy.issubdtype(dtype, numpy.integer):
out_dtype = map_dtype_to_device(dpnp.float64, ia.sycl_device)
else:
out_dtype = _get_output_data_type(dtype)
out_dtype = map_dtype_to_device(expected.dtype, ia.sycl_device)
iout = dpnp.empty(expected.shape, dtype=out_dtype)
result = dpnp.divide(ia, ib, out=iout)

Expand Down Expand Up @@ -318,7 +289,9 @@ def do_inplace_op(self, base, other, func):
@pytest.mark.usefixtures("suppress_divide_numpy_warnings")
@pytest.mark.parametrize("dtype", ALL_DTYPES)
def test_basic(self, func, dtype):
a, b, expected = _get_numpy_arrays_2in_1out(func, dtype, [-5, 5, 10])
a = generate_random_numpy_array(10, dtype)
b = generate_random_numpy_array(10, dtype)
expected = getattr(numpy, func)(a, b)

ia, ib = dpnp.array(a), dpnp.array(b)
iout = dpnp.empty(expected.shape, dtype=dtype)
Expand Down Expand Up @@ -398,9 +371,9 @@ def test_invalid_out(self, func, xp, out):
assert_raises(TypeError, getattr(xp, func), a, 2, out)


@pytest.mark.parametrize("func", ["fmax", "fmin"])
class TestFmaxFmin:
@pytest.mark.skipif(not has_support_aspect16(), reason="no fp16 support")
@pytest.mark.parametrize("func", ["fmax", "fmin"])
def test_half(self, func):
a = numpy.array([0, 1, 2, 4, 2], dtype=numpy.float16)
b = numpy.array([-2, 5, 1, 4, 3], dtype=numpy.float16)
Expand All @@ -415,7 +388,6 @@ def test_half(self, func):
expected = getattr(numpy, func)(b, c)
assert_equal(result, expected)

@pytest.mark.parametrize("func", ["fmax", "fmin"])
@pytest.mark.parametrize("dtype", get_float_dtypes())
def test_float_nans(self, func, dtype):
a = numpy.array([0, numpy.nan, numpy.nan], dtype=dtype)
Expand All @@ -426,7 +398,6 @@ def test_float_nans(self, func, dtype):
expected = getattr(numpy, func)(a, b)
assert_equal(result, expected)

@pytest.mark.parametrize("func", ["fmax", "fmin"])
@pytest.mark.parametrize("dtype", get_complex_dtypes())
@pytest.mark.parametrize(
"nan_val",
Expand All @@ -446,7 +417,6 @@ def test_complex_nans(self, func, dtype, nan_val):
expected = getattr(numpy, func)(a, b)
assert_equal(result, expected)

@pytest.mark.parametrize("func", ["fmax", "fmin"])
@pytest.mark.parametrize("dtype", get_float_dtypes(no_float16=False))
def test_precision(self, func, dtype):
dtmin = numpy.finfo(dtype).min
Expand Down Expand Up @@ -602,9 +572,9 @@ class TestMultiply:

@pytest.mark.parametrize("dtype", ALL_DTYPES)
def test_multiply(self, dtype):
a, b, expected = _get_numpy_arrays_2in_1out(
"multiply", dtype, [0, 10, 10]
)
a = generate_random_numpy_array(10, dtype)
b = generate_random_numpy_array(10, dtype)
expected = numpy.multiply(a, b)

ia, ib = dpnp.array(a), dpnp.array(b)
iout = dpnp.empty(expected.shape, dtype=dtype)
Expand Down Expand Up @@ -853,8 +823,9 @@ def test_basic(self, array, val, data_type, val_type):

@pytest.mark.parametrize("dtype", ALL_DTYPES)
def test_power(self, dtype):
numpy.random.seed(42)
a, b, expected = _get_numpy_arrays_2in_1out("power", dtype, [0, 10, 10])
a = generate_random_numpy_array(10, dtype, low=0)
b = generate_random_numpy_array(10, dtype, low=0)
expected = numpy.power(a, b)

ia, ib = dpnp.array(a), dpnp.array(b)
out_dtype = numpy.int8 if dtype == numpy.bool_ else dtype
Expand Down Expand Up @@ -1075,9 +1046,9 @@ class TestSubtract:

@pytest.mark.parametrize("dtype", ALL_DTYPES)
def test_add(self, dtype):
a, b, expected = _get_numpy_arrays_2in_1out(
"subtract", dtype, [-5, 5, 10]
)
a = generate_random_numpy_array(10, dtype)
b = generate_random_numpy_array(10, dtype)
expected = numpy.subtract(a, b)

ia, ib = dpnp.array(a), dpnp.array(b)
iout = dpnp.empty(expected.shape, dtype=dtype)
Expand Down
68 changes: 39 additions & 29 deletions dpnp/tests/test_mathematical.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@

import dpnp
from dpnp.dpnp_array import dpnp_array
from dpnp.dpnp_utils import map_dtype_to_device

from .helper import (
assert_dtype_allclose,
Expand All @@ -32,14 +33,33 @@
has_support_aspect64,
numpy_version,
)
from .test_umath import (
_get_numpy_arrays_1in_1out,
_get_numpy_arrays_2in_1out,
_get_output_data_type,
)
from .third_party.cupy import testing


def _get_output_data_type(dtype):
"""Return a data type specified by input `dtype` and device capabilities."""
dtype_float16 = any(
dpnp.issubdtype(dtype, t) for t in (dpnp.bool, dpnp.int8, dpnp.uint8)
)
dtype_float32 = any(
dpnp.issubdtype(dtype, t) for t in (dpnp.int16, dpnp.uint16)
)
if dtype_float16:
out_dtype = dpnp.float16 if has_support_aspect16() else dpnp.float32
elif dtype_float32:
out_dtype = dpnp.float32
elif dpnp.issubdtype(dtype, dpnp.complexfloating):
out_dtype = dpnp.complex64
if has_support_aspect64() and dtype != dpnp.complex64:
out_dtype = dpnp.complex128
else:
out_dtype = dpnp.float32
if has_support_aspect64() and dtype != dpnp.float32:
out_dtype = dpnp.float64

return out_dtype


@pytest.mark.parametrize("deg", [True, False])
class TestAngle:
def test_angle_bool(self, deg):
Expand Down Expand Up @@ -2271,30 +2291,19 @@ def test_projection(self, dtype):
assert dpnp.allclose(result, expected)


@pytest.mark.parametrize("func", ["ceil", "floor", "trunc"])
class TestRoundingFuncs:
@pytest.fixture(
params=[
{"func_name": "ceil", "input_values": [-5, 5, 10]},
{"func_name": "floor", "input_values": [-5, 5, 10]},
{"func_name": "trunc", "input_values": [-5, 5, 10]},
],
ids=["ceil", "floor", "trunc"],
)
def func_params(self, request):
return request.param

@pytest.mark.parametrize(
"dtype", get_all_dtypes(no_none=True, no_complex=True)
)
def test_out(self, func_params, dtype):
func_name = func_params["func_name"]
input_values = func_params["input_values"]
a, expected = _get_numpy_arrays_1in_1out(func_name, dtype, input_values)
def test_out(self, func, dtype):
a = generate_random_numpy_array(10, dtype)
expected = getattr(numpy, func)(a)

ia = dpnp.array(a)
out_dt = numpy.int8 if dtype == dpnp.bool else dtype
iout = dpnp.empty(expected.shape, dtype=out_dt)
result = getattr(dpnp, func_name)(ia, out=iout)
result = getattr(dpnp, func)(ia, out=iout)

assert result is iout
# numpy.ceil, numpy.floor, numpy.trunc always return float dtype for
Expand All @@ -2310,34 +2319,35 @@ def test_out(self, func_params, dtype):
@pytest.mark.parametrize(
"dtype", get_all_dtypes(no_complex=True, no_none=True)[:-1]
)
def test_invalid_dtype(self, func_params, dtype):
func_name = func_params["func_name"]
def test_invalid_dtype(self, func, dtype):
dpnp_dtype = get_all_dtypes(no_complex=True, no_none=True)[-1]
ia = dpnp.arange(10, dtype=dpnp_dtype)
iout = dpnp.empty(10, dtype=dtype)

with pytest.raises(ValueError):
getattr(dpnp, func_name)(ia, out=iout)
getattr(dpnp, func)(ia, out=iout)

@pytest.mark.parametrize(
"shape", [(0,), (15,), (2, 2)], ids=["(0,)", "(15,)", "(2, 2)"]
)
def test_invalid_shape(self, func_params, shape):
func_name = func_params["func_name"]
def test_invalid_shape(self, func, shape):
ia = dpnp.arange(10, dtype=dpnp.float32)
iout = dpnp.empty(shape, dtype=dpnp.float32)
assert_raises(ValueError, getattr(dpnp, func_name), ia, out=iout)

assert_raises(ValueError, getattr(dpnp, func), ia, out=iout)


class TestHypot:
@pytest.mark.parametrize(
"dtype", get_all_dtypes(no_none=True, no_bool=True, no_complex=True)
)
def test_hypot(self, dtype):
a, b, expected = _get_numpy_arrays_2in_1out("hypot", dtype, [0, 10, 10])
a = generate_random_numpy_array(10, dtype, low=0)
b = generate_random_numpy_array(10, dtype, low=0)
expected = numpy.hypot(a, b)

ia, ib = dpnp.array(a), dpnp.array(b)
out_dt = _get_output_data_type(dtype)
out_dt = map_dtype_to_device(expected.dtype, ia.sycl_device)
iout = dpnp.empty(expected.shape, dtype=out_dt)
result = dpnp.hypot(ia, ib, out=iout)

Expand Down
Loading
Loading