Skip to content

Commit

Permalink
fix(trajectory_follower_nodes): mpc_follower does not send proper con…
Browse files Browse the repository at this point in the history
…verged data under low steering rate limit (autowarefoundation#2454)
  • Loading branch information
brkay54 authored Jun 2, 2023
1 parent dc76ed4 commit 9ca4ce4
Show file tree
Hide file tree
Showing 4 changed files with 118 additions and 14 deletions.
23 changes: 16 additions & 7 deletions control/mpc_lateral_controller/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,12 +34,15 @@ For the optimization, a Quadratic Programming (QP) solver is used and two option
<!-- cspell: ignore ADMM -->

- unconstraint_fast : use least square method to solve unconstraint QP with eigen.
- [osqp](https://osqp.org/): run the [following ADMM](https://web.stanford.edu/~boyd/papers/admm_distr_stats.html) algorithm (for more details see the related papers at the [Citing OSQP](https://web.stanford.edu/~boyd/papers/admm_distr_stats.html) section):
- [osqp](https://osqp.org/): run the [following ADMM](https://web.stanford.edu/~boyd/papers/admm_distr_stats.html)
algorithm (for more details see the related papers at
the [Citing OSQP](https://web.stanford.edu/~boyd/papers/admm_distr_stats.html) section):

### Filtering

Filtering is required for good noise reduction.
A [Butterworth filter](https://en.wikipedia.org/wiki/Butterworth_filter) is used for the yaw and lateral errors used as input of the MPC as well as for
A [Butterworth filter](https://en.wikipedia.org/wiki/Butterworth_filter) is used for the yaw and lateral errors used as
input of the MPC as well as for
the output steering angle.
Other filtering methods can be considered as long as the noise reduction performances are good
enough.
Expand Down Expand Up @@ -105,6 +108,7 @@ AutonomouStuff Lexus RX 450h for under 40 km/h driving.
| keep_steer_control_until_converged | bool | keep steer control until steer is converged | true |
| new_traj_duration_time | double | threshold value of the time to be considered as new trajectory | 1.0 |
| new_traj_end_dist | double | threshold value of the distance between trajectory ends to be considered as new trajectory | 0.3 |
| mpc_converged_threshold_rps | double | threshold value to be sure output of the optimization is converged, it is used in stopped state | 0.3 |

(\*1) To prevent unnecessary steering movement, the steering command is fixed to the previous value in the stop state.

Expand Down Expand Up @@ -143,11 +147,13 @@ AutonomouStuff Lexus RX 450h for under 40 km/h driving.
### How to tune MPC parameters

1. Set appropriate vehicle kinematics parameters for distance to front and rear axle and max steer angle.
Also check that the input `VehicleKinematicState` has appropriate values (speed: vehicle rear-wheels-center velocity [km/h], angle: steering (tire) angle [rad]).
Also check that the input `VehicleKinematicState` has appropriate values (speed: vehicle rear-wheels-center
velocity [km/h], angle: steering (tire) angle [rad]).
These values give a vehicle information to the controller for path following.
Errors in these values cause fundamental tracking error.

2. Set appropriate vehicle dynamics parameters of `steering_tau`, which is the approximated delay from steering angle command to actual steering angle.
2. Set appropriate vehicle dynamics parameters of `steering_tau`, which is the approximated delay from steering angle
command to actual steering angle.

3. Set `weight_steering_input` = 1.0, `weight_lat_error` = 0.1, and other weights to 0.
If the vehicle oscillates when driving with low speed, set `weight_lat_error` smaller.
Expand All @@ -156,7 +162,8 @@ AutonomouStuff Lexus RX 450h for under 40 km/h driving.
One of the simple way for tuning is to increase `weight_lat_error` until oscillation occurs.
If the vehicle is unstable with very small `weight_lat_error`, increase terminal weight :
`weight_terminal_lat_error` and `weight_terminal_heading_error` to improve tracking stability.
Larger `prediction_horizon` and smaller `prediction_sampling_time` is effective for tracking performance, but it is a trade-off between computational costs.
Larger `prediction_horizon` and smaller `prediction_sampling_time` is effective for tracking performance, but it is a
trade-off between computational costs.
Other parameters can be adjusted like below.

- `weight_lat_error`: Reduce lateral tracking error. This acts like P gain in PID.
Expand All @@ -165,8 +172,10 @@ AutonomouStuff Lexus RX 450h for under 40 km/h driving.
- `weight_steering_input`: Reduce oscillation of tracking.
- `weight_steering_input_squared_vel_coeff`: Reduce oscillation of tracking in high speed range.
- `weight_lat_jerk`: Reduce lateral jerk.
- `weight_terminal_lat_error`: Preferable to set a higher value than normal lateral weight `weight_lat_error` for stability.
- `weight_terminal_heading_error`: Preferable to set a higher value than normal heading weight `weight_heading_error` for stability.
- `weight_terminal_lat_error`: Preferable to set a higher value than normal lateral weight `weight_lat_error` for
stability.
- `weight_terminal_heading_error`: Preferable to set a higher value than normal heading weight `weight_heading_error`
for stability.

## References / External links

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -47,6 +47,7 @@
#include <deque>
#include <memory>
#include <string>
#include <utility>
#include <vector>

namespace autoware::motion::control::mpc_lateral_controller
Expand Down Expand Up @@ -99,16 +100,32 @@ class MpcLateralController : public trajectory_follower::LateralControllerBase
double m_stop_state_entry_ego_speed;
double m_stop_state_entry_target_speed;
double m_converged_steer_rad;
double m_new_traj_duration_time; // check trajectory shape change
double m_new_traj_end_dist; // check trajectory shape change
double m_mpc_converged_threshold_rps; // max mpc output change threshold for 1 sec
double m_new_traj_duration_time; // check trajectory shape change
double m_new_traj_end_dist; // check trajectory shape change
bool m_keep_steer_control_until_converged;

/* parameter to store the actual steering rate limit */
double m_steer_rate_lim;

// trajectory buffer for detecting new trajectory
std::deque<autoware_auto_planning_msgs::msg::Trajectory> m_trajectory_buffer;

// MPC object
MPC m_mpc;

// Check is mpc output converged
bool m_is_mpc_history_filled{false};

//!< @brief store the last mpc outputs for 1 sec
std::vector<std::pair<autoware_auto_control_msgs::msg::AckermannLateralCommand, rclcpp::Time>>
m_mpc_steering_history{};
//!< @brief set the mpc steering output to history
void setSteeringToHistory(
const autoware_auto_control_msgs::msg::AckermannLateralCommand & steering);
//!< @brief check if the mpc steering output is converged
bool isMpcConverged();

//!< @brief measured kinematic state
nav_msgs::msg::Odometry m_current_kinematic_state;
//!< @brief measured steering
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -62,6 +62,7 @@
keep_steer_control_until_converged: true
new_traj_duration_time: 1.0
new_traj_end_dist: 0.3
mpc_converged_threshold_rps: 0.01 # threshold of mpc convergence check [rad/s]

# steer offset
steering_offset:
Expand Down
87 changes: 82 additions & 5 deletions control/mpc_lateral_controller/src/mpc_lateral_controller.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -69,14 +69,16 @@ MpcLateralController::MpcLateralController(rclcpp::Node & node) : node_{&node}
node_->declare_parameter<bool>("keep_steer_control_until_converged");
m_new_traj_duration_time = node_->declare_parameter<double>("new_traj_duration_time"); // [s]
m_new_traj_end_dist = node_->declare_parameter<double>("new_traj_end_dist"); // [m]
m_mpc_converged_threshold_rps =
node_->declare_parameter<double>("mpc_converged_threshold_rps"); // [rad/s]

/* mpc parameters */
const auto vehicle_info = vehicle_info_util::VehicleInfoUtil(*node_).getVehicleInfo();
const double wheelbase = vehicle_info.wheel_base_m;
const double steer_rate_lim_dps = node_->declare_parameter<double>("steer_rate_lim_dps");
constexpr double deg2rad = static_cast<double>(M_PI) / 180.0;
m_mpc.m_steer_lim = vehicle_info.max_steer_angle_rad;
m_mpc.m_steer_rate_lim = steer_rate_lim_dps * deg2rad;
m_steer_rate_lim = steer_rate_lim_dps * deg2rad;

/* vehicle model setup */
const std::string vehicle_model_type =
Expand Down Expand Up @@ -202,6 +204,17 @@ trajectory_follower::LateralOutput MpcLateralController::run(
m_is_ctrl_cmd_prev_initialized = true;
}

const bool is_vehicle_stopped = std::fabs(m_current_kinematic_state.twist.twist.linear.x) < 0.01;

// if the vehicle is stopped, set steering angle rate limit to a large value to get a proper
// steering value from mpc.
// TODO(someone): solve mpc cannot create output in low steering rate limit problem
if (is_vehicle_stopped) {
m_mpc.m_steer_rate_lim = std::numeric_limits<double>::max();
} else {
m_mpc.m_steer_rate_lim = m_steer_rate_lim;
}

const bool is_mpc_solved = m_mpc.calculateMPC(
m_current_steering, m_current_kinematic_state.twist.twist.linear.x,
m_current_kinematic_state.pose.pose, ctrl_cmd, predicted_traj, debug_values);
Expand All @@ -213,6 +226,8 @@ trajectory_follower::LateralOutput MpcLateralController::run(
// the actual steer angle, and it may make the optimization result unstable.
if (!is_mpc_solved) {
m_mpc.resetPrevResult(m_current_steering);
} else {
setSteeringToHistory(ctrl_cmd);
}

if (enable_auto_steering_offset_removal_) {
Expand All @@ -225,10 +240,17 @@ trajectory_follower::LateralOutput MpcLateralController::run(
publishPredictedTraj(predicted_traj);
publishDebugValues(debug_values);

const auto createLateralOutput = [this](const auto & cmd) {
const auto createLateralOutput = [this](const auto & cmd, const bool is_mpc_solved) {
trajectory_follower::LateralOutput output;
output.control_cmd = createCtrlCmdMsg(cmd);
output.sync_data.is_steer_converged = isSteerConverged(cmd);
// To be sure current steering of the vehicle is desired steering angle, we need to check
// following conditions.
// 1. At the last loop, mpc should be solved because command should be optimized output.
// 2. The mpc should be converged.
// 3. The steer angle should be converged.
output.sync_data.is_steer_converged =
is_mpc_solved && isMpcConverged() && isSteerConverged(cmd);

return output;
};

Expand All @@ -239,7 +261,7 @@ trajectory_follower::LateralOutput MpcLateralController::run(
}
// Use previous command value as previous raw steer command
m_mpc.m_raw_steer_cmd_prev = m_ctrl_cmd_prev.steering_tire_angle;
return createLateralOutput(m_ctrl_cmd_prev);
return createLateralOutput(m_ctrl_cmd_prev, false);
}

if (!is_mpc_solved) {
Expand All @@ -250,7 +272,7 @@ trajectory_follower::LateralOutput MpcLateralController::run(
}

m_ctrl_cmd_prev = ctrl_cmd;
return createLateralOutput(ctrl_cmd);
return createLateralOutput(ctrl_cmd, is_mpc_solved);
}

bool MpcLateralController::isSteerConverged(
Expand Down Expand Up @@ -410,6 +432,61 @@ void MpcLateralController::publishDebugValues(
m_pub_steer_offset->publish(offset);
}

void MpcLateralController::setSteeringToHistory(
const autoware_auto_control_msgs::msg::AckermannLateralCommand & steering)
{
const auto time = node_->now();
if (m_mpc_steering_history.empty()) {
m_mpc_steering_history.emplace_back(steering, time);
m_is_mpc_history_filled = false;
return;
}

m_mpc_steering_history.emplace_back(steering, time);

// Check the history is filled or not.
if (rclcpp::Duration(time - m_mpc_steering_history.begin()->second).seconds() >= 1.0) {
m_is_mpc_history_filled = true;
// remove old data that is older than 1 sec
for (auto itr = m_mpc_steering_history.begin(); itr != m_mpc_steering_history.end(); ++itr) {
if (rclcpp::Duration(time - itr->second).seconds() > 1.0) {
m_mpc_steering_history.erase(m_mpc_steering_history.begin());
} else {
break;
}
}
} else {
m_is_mpc_history_filled = false;
}
}

bool MpcLateralController::isMpcConverged()
{
// If the number of variable below the 2, there is no enough data so MPC is not converged.
if (m_mpc_steering_history.size() < 2) {
return false;
}

// If the history is not filled, return false.

if (!m_is_mpc_history_filled) {
return false;
}

// Find the maximum and minimum values of the steering angle in the past 1 second.
double min_steering_value = m_mpc_steering_history[0].first.steering_tire_angle;
double max_steering_value = m_mpc_steering_history[0].first.steering_tire_angle;
for (size_t i = 1; i < m_mpc_steering_history.size(); i++) {
if (m_mpc_steering_history[i].first.steering_tire_angle < min_steering_value) {
min_steering_value = m_mpc_steering_history[i].first.steering_tire_angle;
}
if (m_mpc_steering_history[i].first.steering_tire_angle > max_steering_value) {
max_steering_value = m_mpc_steering_history[i].first.steering_tire_angle;
}
}
return (max_steering_value - min_steering_value) < m_mpc_converged_threshold_rps;
}

void MpcLateralController::declareMPCparameters()
{
m_mpc.m_param.prediction_horizon = node_->declare_parameter<int>("mpc_prediction_horizon");
Expand Down

0 comments on commit 9ca4ce4

Please sign in to comment.