Skip to content

Iqra350/krock2_traversability

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Masther Thesis

Francesco Saverio Zuppichini

With this project, we estimate ground traversability for a legged crocodile-like robot. We generate different synthetic grounds and let the robot walk on them in a simulated environment to collect its interaction with the terrain. Then, we train a deep convolutional neural network using the data collected through simulation to predict wether a given ground patch can be traverse or not. Later, we highlight the strength and weakness of our method by using interpretability techniques to visualise the network's behaviour in interesting scenarios.

[WARNING] In progress image The proposed traversability framework's main blocks in couter-clockwise order. First we generated meaningful synthetic ground, then we let the robot spawn and walk on them in simulated enviroment while storing its interactions. Later, we crop a region of ground, a patch, for each simulation trajectory around the robot according to its locomotion. We label those images using a defined treshold and fit a deep convolutional neural network to predict traversability.

image Map traversability from bottom to top (up-hill) for the Krock robot. The greaner the traversable image Krock

Stucture

Deprecated

.
├── blender // Scripts used to creat the 3d visualization in blenders
├── Config.py
├── docker
├── docker-compose-webots.yml
├── docker-compose.yml
├── estimators
│   ├── callbacks.py
│   ├── datasets // Custom dataset to properly preprocess the data in Pytorch
│   ├── inference.py
│   ├── models 
│   ├── README.md
│   ├── test.py
│   ├── train.py
│   ├── utils.py
│   ├── visualise.ipynb
│   └── visualise.py
├── example.ipynb
├── images
│   └── bars1_krock.jpg
├── __init__.py
├── maps
├── notebooks
├── nvidia-docker-compose.yml
├── playground.py
├── protocols // proctols shared across different packages
├── README.md
├── requirements.txt
├── simulation
│   ├── agent
│   │   ├── Agent.py
│   │   ├── callbacks
│   │   └── RospyAgent.py
│   ├── block.py
│   ├── env
│   │   ├── conditions
│   │   ├── spawn
│   │   └── webots
│   └── Simulation.py
├── utilities
│   ├── fix_bag_image_path.py
│   ├── History.py
│   ├── patches // API to create custom patches with different obstacles
│   ├── pipeline.py // API to create custom Pipeline
│   ├── postprocessing // Package to post process the data in order to extract all the patches
│   ├── visualisation // Package to visualize a dataset
│   └── webots2ros // API to easily work with ROS in webots
└── visualization.ipynb


Each package as its own documentation and examples.

Results

Final results with a our MicroResNet image

Krock-2-trasversability_IDSIA

=======

krock2_traversability

afcc9c97959834131b01157c2df04d1525801b6e

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published