Skip to content

使用预训练语言模型BERT做中文NER

Notifications You must be signed in to change notification settings

Irvinghua/bert-chinese-ner

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

bert-chinese-ner

使用预训练语言模型BERT做中文NER尝试,fine - tune BERT模型

代码参考

使用方法

BERT-TF下载bert源代码,存放在路径下bert文件夹中

BERT-Base Chinese下载模型,存放在checkpoint文件夹下

使用BIO数据标注模式,使用人民日报经典数据

train:

python BERT_NER.py --data_dir=data/ --bert_config_file=checkpoint/bert_config.json --init_checkpoint=checkpoint/bert_model.ckpt --vocab_file=vocab.txt --output_dir=./output/result_dir/

结果

经过100个epoch跑出来的结果

eval_f = 0.9662649
eval_precision = 0.9668882
eval_recall = 0.9656949
global_step = 135181
loss = 40.160034

测试结果第一句:

python BERT_NER.py --data_dir=data/ --bert_config_file=E:\NLP\bert-model\chinese_L-12_H-768_A-12\bert_config.json --init_checkpoint=E:\NLP\bert-model\chinese_L-12_H-768_A-12\bert_model.ckpt --vocab_file=E:\NLP\bert-model\chinese_L-12_H-768_A-12\vocab.txt --output_dir=./output/result_dir/

About

使用预训练语言模型BERT做中文NER

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 71.9%
  • Perl 28.1%