A python package for Target Controlled Infusions.
Spawned from the NHS Hack Day project https://github.com/JMathiszig-Lee/Propofol, this splits out useful code into a package and updates it to python3
if using pip
pip install PyTCI
if using pipenv (you should, it's great)
pipenv install PyTCI
PyTCI currently supports the following:
Body Mass equations:
- BMI
- Ideal body weight (Devine)
- Adjusted body weight
- James Equation
- Boer
- Hume(1966)
- Hume(1971)
- Janmahasation(2005)
- Al-Sallami
example:
>>> from PyTCI.weights import leanbodymass
>>> leanbodymass.hume66(180, 60 'm')
51.2
Propofol
- Schnider
- Marsh
- Eleveld
- Kataria
- Paedfusor
Remifentanil
- Minto
- Eleveld
Alfentanil
- Maitre
Dexmedetomidine
- Hannivoort
- Dyck
example:
>>> from PyTCI.models import propofol
>>> patient = propofol.Schnider(40, 70, 170, 'm')
>>> patient.v2
24
the class methods give_drug
and wait_time
can he used to model propofol kinetics
example:
>>> from PyTCI.models import propofol
>>> patient = propofol.Marsh(90)
>>> patient.give_drug(200)
>>> patient.x1
9.746588693957115
>>> patient.wait_time(60)
>>> patient.x1
7.438318565317236
Infusions
Infusions are currently only implemented for propofol
The two methods available are effect_bolus
and plasma_infusion
Effect bolus returns the bolus (in mg) needed over 10 seconds to achieve the desired effect site concentration. It's input is the desired target in ug/ml and returns the bolus needed in mg
>>> patient = propofol.Schnider(40, 70, 190, 'm')
>>> patient.effect_bolus(6)
95.1
the function uses a simple search to find a dose that gets within 2% of the desired concentration
Plasma_infusion takes desired plasma concentration(ug/ml), desired total time (seconds) and the time period for each segment (seconds) and returns a python list of the required infusions rates from every segment witin the total time specified in mg/sec
>>> pt = propofol.Marsh(70)
>>> pt.plasma_infusion(2, 60)
[3.27269899102373, 0.1453355022895698, 0.14478000490919285, 0.14422948797801816, 0.1436839059972244, 0.143143213884116]
>>> pt.plasma_infusion(2, 60, 30)
[0.1420619352906052, 0.1417017659270992]
The built in models inherit from a parent class. You can define your own models and use the same functions to see how yours performs
class MyNewModel(Propofol):
def __init__(self, desired, arguments):
#my custom code to generate volumes and constants
self.v1 = a_constant * weight
self.v2 = a_constant * lean_body_mass
etc... etc...
#if you want to work with clearances rate constants must be generated
self.from_clearances(self)
#finally set up model
self.setup(self)