Skip to content

JMathiszig-Lee/PyTCI

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PyTCI

A python package for Target Controlled Infusions.

Spawned from the NHS Hack Day project https://github.com/JMathiszig-Lee/Propofol, this splits out useful code into a package and updates it to python3

Build Status [PyPI - Python Version
Coverage Status GitHub license
Language grade: Python

Installation

if using pip

pip install PyTCI

if using pipenv (you should, it's great)

pipenv install PyTCI

Usage

PyTCI currently supports the following:

Body Mass equations:

  • BMI
  • Ideal body weight (Devine)
  • Adjusted body weight
  • James Equation
  • Boer
  • Hume(1966)
  • Hume(1971)
  • Janmahasation(2005)
  • Al-Sallami

example:

>>> from PyTCI.weights import leanbodymass
>>> leanbodymass.hume66(180, 60 'm')
51.2

Models:

Propofol

  • Schnider
  • Marsh
  • Eleveld
  • Kataria
  • Paedfusor

Remifentanil

  • Minto
  • Eleveld

Alfentanil

  • Maitre

Dexmedetomidine

  • Hannivoort
  • Dyck

example:

>>> from PyTCI.models import propofol
>>> patient = propofol.Schnider(40, 70, 170, 'm')
>>> patient.v2
24

the class methods give_drug and wait_time can he used to model propofol kinetics

example:

>>> from PyTCI.models import propofol
>>> patient = propofol.Marsh(90)
>>> patient.give_drug(200)
>>> patient.x1
9.746588693957115
>>> patient.wait_time(60)
>>> patient.x1
7.438318565317236

Infusions

Infusions are currently only implemented for propofol

The two methods available are effect_bolus and plasma_infusion

Effect bolus returns the bolus (in mg) needed over 10 seconds to achieve the desired effect site concentration. It's input is the desired target in ug/ml and returns the bolus needed in mg

>>> patient = propofol.Schnider(40, 70, 190, 'm')
>>> patient.effect_bolus(6)
95.1

the function uses a simple search to find a dose that gets within 2% of the desired concentration

Plasma_infusion takes desired plasma concentration(ug/ml), desired total time (seconds) and the time period for each segment (seconds) and returns a python list of the required infusions rates from every segment witin the total time specified in mg/sec

>>> pt = propofol.Marsh(70)
>>> pt.plasma_infusion(2, 60)
[3.27269899102373, 0.1453355022895698, 0.14478000490919285, 0.14422948797801816, 0.1436839059972244, 0.143143213884116]
>>> pt.plasma_infusion(2, 60, 30)
[0.1420619352906052, 0.1417017659270992]

The built in models inherit from a parent class. You can define your own models and use the same functions to see how yours performs

class MyNewModel(Propofol):
     def __init__(self, desired, arguments):
        #my custom code to generate volumes and constants
        self.v1 = a_constant * weight
        self.v2 = a_constant * lean_body_mass
        etc... etc...

        #if you want to work with clearances rate constants must be generated
        self.from_clearances(self)

        #finally set up model 
        self.setup(self)

About

Python package for Target Controlled Infusions

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages