-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
... which only works when using models with measurement errors
- Loading branch information
1 parent
9df66d0
commit f2b5d50
Showing
6 changed files
with
313 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
|
||
#' @title Calculate conditional AIC | ||
#' | ||
#' @description | ||
#' Calculates the conditional Akaike Information criterion (cAIC). | ||
#' | ||
#' @param object Output from \code{\link{dsem}} | ||
#' @param what Whether to return the cAIC or the effective degrees of freedom | ||
#' (EDF) for each group of random effects. | ||
#' | ||
#' @details | ||
#' cAIC is designed to optimize the expected out-of-sample predictive | ||
#' performance for new data that share the same random effects as the | ||
#' in-sample (fitted) data, e.g., spatial interpolation. In this sense, | ||
#' it should be a fast approximation to optimizing the model structure | ||
#' based on k-fold crossvalidation. | ||
#' By contrast, \code{AIC} calculates the | ||
#' marginal Akaike Information Criterion, which is designed to optimize | ||
#' expected predictive performance for new data that have new random effects, | ||
#' e.g., extrapolation, or inference about generative parameters. | ||
#' | ||
#' cAIC also calculates as a byproduct the effective degrees of freedom, | ||
#' i.e., the number of fixed effects that would have an equivalent impact on | ||
#' model flexibility as a given random effect. | ||
#' | ||
#' Both cAIC and EDF are calculated using Eq. 6 of Zheng Cadigan Thorson 2024. | ||
#' | ||
#' Note that, for models that include profiled fixed effects, these profiles | ||
#' are turned off. | ||
#' | ||
#' @return | ||
#' Either the cAIC, or the effective degrees of freedom (EDF) by group | ||
#' of random effects | ||
#' | ||
#' @references | ||
#' | ||
#' **Deriving the general approximation to cAIC used here** | ||
#' | ||
#' Zheng, N., Cadigan, N., & Thorson, J. T. (2024). | ||
#' A note on numerical evaluation of conditional Akaike information for | ||
#' nonlinear mixed-effects models (arXiv:2411.14185). arXiv. | ||
#' \doi{10.48550/arXiv.2411.14185} | ||
#' | ||
#' **The utility of EDF to diagnose hierarchical model behavior** | ||
#' | ||
#' Thorson, J. T. (2024). Measuring complexity for hierarchical | ||
#' models using effective degrees of freedom. Ecology, | ||
#' 105(7), e4327 \doi{10.1002/ecy.4327} | ||
#' | ||
#' @export | ||
cAIC <- | ||
function( object, | ||
what = c("cAIC","EDF") ){ | ||
|
||
what = match.arg(what) | ||
data = object$tmb_inputs$data | ||
|
||
# Error checks | ||
if(any(is.na(object$tmb_inputs$map$x_tj))){ | ||
stop("cAIC is not implemented when fixing states at data using family=`fixed`") | ||
} | ||
|
||
# Turn on all GMRF parameters | ||
map = object$tmb_inputs$map | ||
map$x_tj = factor(seq_len(prod(dim(data$y_tj)))) | ||
|
||
# Make sure profile = NULL | ||
#if( is.null(object$internal$control$profile) ){ | ||
obj = object$obj | ||
#}else{ | ||
obj = TMB::MakeADFun( data = data, | ||
parameters = object$internal$parhat, | ||
random = object$tmb_inputs$random, | ||
map = map, | ||
profile = NULL, | ||
DLL="dsem", | ||
silent = TRUE ) | ||
#} | ||
|
||
# Weights = 0 is equivalent to data = NA | ||
data$y_tj[] = NA | ||
# Make obj_new | ||
obj_new = TMB::MakeADFun( data = data, | ||
parameters = object$internal$parhat, | ||
map = map, | ||
random = object$tmb_inputs$random, | ||
DLL = "dsem", | ||
profile = NULL ) | ||
|
||
# | ||
par = obj$env$parList() | ||
parDataMode <- obj$env$last.par | ||
indx = obj$env$lrandom() | ||
q = sum(indx) | ||
p = length(object$opt$par) | ||
|
||
## use - for Hess because model returns negative loglikelihood; | ||
Hess_new = -Matrix::Matrix(obj_new$env$f(parDataMode,order=1,type="ADGrad"),sparse = TRUE) | ||
#cov_Psi_inv = -Hess_new[indx,indx]; ## this is the marginal prec mat of REs; | ||
Hess_new = Hess_new[indx,indx] | ||
|
||
## Joint hessian etc | ||
Hess = -Matrix::Matrix(obj$env$f(parDataMode,order=1,type="ADGrad"),sparse = TRUE) | ||
Hess = Hess[indx,indx] | ||
#negEDF = diag(as.matrix(solve(ddlj.r)) %*% ddlr.r) | ||
negEDF = Matrix::diag(Matrix::solve(Hess, Hess_new)) | ||
# | ||
|
||
if(what=="cAIC"){ | ||
jnll = obj$env$f(parDataMode) | ||
cnll = jnll - obj_new$env$f(parDataMode) | ||
cAIC = 2*cnll + 2*(p+q) - 2*sum(negEDF) | ||
return(cAIC) | ||
} | ||
if(what=="EDF"){ | ||
#Sdims = object$tmb_inputs$tmb_data$Sdims | ||
#group = rep.int( seq_along(Sdims), times=Sdims ) | ||
#names(negEDF) = names(obj$env$last.par)[indx] | ||
EDF = length(negEDF) - sum(negEDF) | ||
return(EDF) | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
|
||
if( FALSE ){ | ||
setwd( R'(C:\Users\James.Thorson\Desktop\Git\dsem\src\)' ) | ||
TMB::compile( 'dsem.cpp' ) | ||
devtools::document( R'(C:\Users\James.Thorson\Desktop\Git\dsem)' ) | ||
devtools::install_local( R'(C:\Users\James.Thorson\Desktop\Git\dsem)', dep=FALSE, force=TRUE ) | ||
} | ||
|
||
################# | ||
# DFA example | ||
################# | ||
|
||
library(dsem) | ||
library(MARSS) | ||
library(ggplot2) | ||
data( harborSealWA, package="MARSS") | ||
|
||
# Define helper function | ||
grab = \(x,name) x[which(names(x)==name)] | ||
|
||
# Define number of factors | ||
# n_factors >= 3 doesn't seem to converge using DSEM or MARSS without penalties | ||
n_factors = 2 | ||
|
||
# Add factors to data | ||
tsdata = harborSealWA[,c("SJI","EBays","SJF","PSnd","HC")] | ||
newcols = array( NA, | ||
dim = c(nrow(tsdata),n_factors), | ||
dimnames = list(NULL,paste0("F",seq_len(n_factors))) ) | ||
tsdata = ts( cbind(tsdata, newcols), start=1978) | ||
|
||
# Scale and center (matches with MARSS does when fitting a DFA) | ||
tsdata = scale( tsdata, center=TRUE, scale=TRUE ) | ||
|
||
# | ||
sem = make_dfa( variables = c("SJI","EBays","SJF","PSnd","HC"), | ||
n_factors = n_factors ) | ||
|
||
# Initial fit | ||
mydsem0 = dsem( tsdata = tsdata, | ||
sem = sem, | ||
family = c( rep("normal",5), rep("fixed",n_factors) ), | ||
estimate_delta0 = TRUE, | ||
control = dsem_control( quiet = TRUE, | ||
run_model = FALSE, | ||
gmrf_parameterization = "projection" ) ) | ||
|
||
# fix all measurement errors at diagonal and equal | ||
map = mydsem0$tmb_inputs$map | ||
map$lnsigma_j = factor( rep(1,ncol(tsdata)) ) | ||
|
||
# Fix factors to have initial value, and variables to not | ||
map$delta0_j = factor( c(rep(NA,ncol(harborSealWA)-1), 1:n_factors) ) | ||
|
||
# Fix variables to have no stationary mean except what's predicted by initial value | ||
map$mu_j = factor( rep(NA,ncol(tsdata)) ) | ||
|
||
# profile "delta0_j" to match MARSS (which treats initial condition as unpenalized random effect) | ||
mydfa = dsem( tsdata = tsdata, | ||
sem = sem, | ||
family = c( rep("normal",5), rep("fixed",n_factors) ), | ||
estimate_delta0 = TRUE, | ||
control = dsem_control( quiet = TRUE, | ||
map = map, | ||
use_REML = TRUE, | ||
#profile = "delta0_j", | ||
gmrf_parameterization = "projection" ) ) | ||
|
||
cAIC(mydfa) | ||
cAIC(mydfa, what="EDF") | ||
|
||
############### | ||
# Klein example | ||
############### | ||
|
||
# Define model | ||
sem = " | ||
# Link, lag, param_name | ||
cprofits -> consumption, 0, a1 | ||
cprofits -> consumption, 1, a2 | ||
pwage -> consumption, 0, a3 | ||
gwage -> consumption, 0, a3 | ||
cprofits -> invest, 0, b1 | ||
cprofits -> invest, 1, b2 | ||
capital -> invest, 0, b3 | ||
gnp -> pwage, 0, c2 | ||
gnp -> pwage, 1, c3 | ||
time -> pwage, 0, c1 | ||
" | ||
|
||
# Load data | ||
data(KleinI, package="AER") | ||
TS = ts(data.frame(KleinI, "time"=time(KleinI) - 1931)) | ||
tsdata = TS[,c("time","gnp","pwage","cprofits",'consumption', | ||
"gwage","invest","capital")] | ||
|
||
# | ||
n_missing = 20 | ||
df_missing = expand.grid( seq_len(nrow(tsdata)), seq_len(ncol(tsdata)) ) | ||
df_missing = df_missing[ sample(seq_len(nrow(df_missing)), size=n_missing, replace=FALSE), ] | ||
tsdata[ as.matrix(df_missing) ] = NA | ||
|
||
# Fit model | ||
fit = dsem( sem=sem, | ||
tsdata = tsdata, | ||
estimate_delta0 = TRUE, | ||
control = dsem_control(quiet=TRUE, | ||
getsd = FALSE, | ||
extra_convergence_checks = FALSE, | ||
newton_loops = 0) ) | ||
|
||
cAIC(fit) | ||
cAIC(fit, what="EDF") | ||
|
||
################### | ||
# Linear model | ||
################### | ||
|
||
# simulate normal distribution | ||
x = rnorm(100) | ||
y = 1 + 0.5 * x + rnorm(100) | ||
data = data.frame(x=x, y=y) | ||
|
||
sem = " | ||
x -> y, 0, beta | ||
" | ||
|
||
# Fit as DSEM | ||
fit = dsem( sem = sem, | ||
tsdata = ts(data), | ||
#family = c("fixed","normal"), | ||
control = dsem_control(quiet=TRUE) ) # gmrf_parameterization = "projection", |