Skip to content

Label Rotated Rect On Images for training

Notifications You must be signed in to change notification settings

JasonG98/roLabelImg

 
 

Repository files navigation

roLabelImg

roLabelImg is a graphical image annotation tool can label ROTATED rectangle regions, which is rewrite from 'labelImg'.

The original version 'labelImg''s link is here<https://github.com/tzutalin/labelImg>.

It is written in Python and uses Qt for its graphical interface.

Watch a demo by author cgvict

Demo Image

https://raw.githubusercontent.com/cgvict/roLabelImg/master/demo/demo_v2.5.gif

https://youtu.be/7D5lvol_QRA

Annotations are saved as XML files almost like PASCAL VOC format, the format used by ImageNet.

XML Format

<annotation verified="yes">
  <folder>hsrc</folder>
  <filename>100000001</filename>
  <path>/Users/haoyou/Library/Mobile Documents/com~apple~CloudDocs/OneDrive/hsrc/100000001.bmp</path>
  <source>
    <database>Unknown</database>
  </source>
  <size>
    <width>1166</width>
    <height>753</height>
    <depth>3</depth>
  </size>
  <segmented>0</segmented>
  <object>
    <type>bndbox</type>
    <name>ship</name>
    <pose>Unspecified</pose>
    <truncated>0</truncated>
    <difficult>0</difficult>
    <bndbox>
      <xmin>178</xmin>
      <ymin>246</ymin>
      <xmax>974</xmax>
      <ymax>504</ymax>
    </bndbox>
  </object>
  <object>
    <type>robndbox</type>
    <name>ship</name>
    <pose>Unspecified</pose>
    <truncated>0</truncated>
    <difficult>0</difficult>
    <robndbox>
      <cx>580.7887</cx>
      <cy>343.2913</cy>
      <w>775.0449</w>
      <h>170.2159</h>
      <angle>2.889813</angle>
    </robndbox>
  </object>
</annotation>

Installation

Download prebuilt binaries of original 'labelImg'

Build from source

Linux/Ubuntu/Mac requires at least Python 2.6 and has been tested with PyQt 4.8.

Ubuntu Linux

sudo apt-get install pyqt4-dev-tools
sudo pip install lxml
make all
./roLabelImg.py
./roLabelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

OS X

brew install qt qt4
brew install libxml2
make all
./roLabelImg.py
./roLabelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

Windows

Download and setup Python 2.6 or later, PyQt4 and install lxml.

Open cmd and go to roLabelImg directory

pyrcc4 -o resources.py resources.qrc
python roLabelImg.py
python roLabelImg.py [IMAGE_PATH] [PRE-DEFINED CLASS FILE]

Use Docker

docker pull tzutalin/py2qt4

docker run -it \
--user $(id -u) \
-e DISPLAY=unix$DISPLAY \
--workdir=$(pwd) \
--volume="/home/$USER:/home/$USER" \
--volume="/etc/group:/etc/group:ro" \
--volume="/etc/passwd:/etc/passwd:ro" \
--volume="/etc/shadow:/etc/shadow:ro" \
--volume="/etc/sudoers.d:/etc/sudoers.d:ro" \
-v /tmp/.X11-unix:/tmp/.X11-unix \
tzutalin/py2qt4

You can pull the image which has all of the installed and required dependencies.

Usage

Steps

  1. Build and launch using the instructions above.
  2. Click 'Change default saved annotation folder' in Menu/File
  3. Click 'Open Dir'
  4. Click 'Create RectBox'
  5. Click and release left mouse to select a region to annotate the rect box
  6. You can use right mouse to drag the rect box to copy or move it

The annotation will be saved to the folder you specify.

You can refer to the below hotkeys to speed up your workflow.

Create pre-defined classes

You can edit the data/predefined_classes.txt to load pre-defined classes

Hotkeys

Ctrl + u Load all of the images from a directory
Ctrl + r Change the default annotation target dir
Ctrl + s Save
Ctrl + d Copy the current label and rect box
Space Flag the current image as verified
w Create a rect box
e Create a Rotated rect box
d Next image
a Previous image
r Hidden/Show Rotated Rect boxes
n Hidden/Show Normal Rect boxes
del Delete the selected rect box
Ctrl++ Zoom in
Ctrl-- Zoom out
↑→↓← Keyboard arrows to move selected rect box
zxcv Keyboard to rotate selected rect box

How to contribute

Send a pull request

License

Free software: MIT license

Related

  1. ImageNet Utils to download image, create a label text for machine learning, etc
  2. Docker hub to run it

About

Label Rotated Rect On Images for training

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.3%
  • Other 0.7%