Skip to content

Commit

Permalink
added f1 ppo gazebo andn fixed gazebo environment also for ddpg
Browse files Browse the repository at this point in the history
  • Loading branch information
rubenlucas93 committed Dec 20, 2023
1 parent ca05f4c commit 06b7286
Show file tree
Hide file tree
Showing 26 changed files with 690 additions and 6 deletions.
Binary file added behavior_metrics/20231114-194204.bag.active
Binary file not shown.
Binary file added behavior_metrics/20231115-085900.bag.active
Binary file not shown.
Original file line number Diff line number Diff line change
Expand Up @@ -170,7 +170,7 @@ def __init__(self, sensors, actuators, handler, config=None):
'algorithm': 'ddpg',
'environment': 'simple',
'agent': 'f1',
'filename': 'brains/f1/config/config_inference_followline_ddpg_f1_gazebo.yaml'
'filename': 'brains/gazebo/f1/config/config_inference_followline_ddpg_f1_gazebo.yaml'
}

f = open(args['filename'], "r")
Expand Down
263 changes: 263 additions & 0 deletions behavior_metrics/brains/gazebo/f1/brain_f1_follow_line_ppo.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,263 @@

import tensorflow as tf
from gym.envs.registration import register
from brains.gazebo.f1.rl_utils.inference import InferencerWrapper
import yaml
import gym
import numpy as np
import time

# F1 envs
if 'F1Env-v0' not in gym.envs.registry.env_specs:
gym.envs.register(
id='F1Env-v0',
entry_point='brains.gazebo.f1.rl_utils.models:F1Env',
# More arguments here
)
else:
print("Environment F1Env-v0 is already registered.")




class LoadEnvVariablesPPOGazebo:
"""
ONLY FOR ppo algorithm
Creates a new variable 'environment', which contains values to Gazebo env, Carla env ...
"""

def __init__(self, config) -> None:
"""environment variable for reset(), step() methods"""
self.environment_set = config["settings"]["environment_set"]
self.env = config["settings"]["env"]
self.agent = config["settings"]["agent"]
self.states = config["settings"]["states"]
self.actions = config["settings"]["actions"]
self.actions_set = config["actions"][self.actions]
self.rewards = config["settings"]["rewards"]
##### environment variable
self.environment = {}
self.environment["agent"] = config["settings"]["agent"]
self.environment["algorithm"] = config["settings"]["algorithm"]
self.environment["task"] = config["settings"]["task"]
self.environment["framework"] = config["settings"]["framework"]
self.environment["model_state_name"] = config[self.environment_set][self.env][
"model_state_name"
]
# Training/inference
self.environment["mode"] = config["settings"]["mode"]

self.environment["inference_ppo_tf_model_name"] = config["inference"][
"ppo"
]["inference_ppo_tf_model_name"]

# Env
self.environment["env"] = config["settings"]["env"]
self.environment["circuit_name"] = config[self.environment_set][self.env][
"circuit_name"
]
self.environment["launchfile"] = config[self.environment_set][self.env][
"launchfile"
]
self.environment["environment_folder"] = config[self.environment_set][self.env][
"environment_folder"
]
self.environment["robot_name"] = config[self.environment_set][self.env][
"robot_name"
]
self.environment["estimated_steps"] = config[self.environment_set][self.env][
"estimated_steps"
]
self.environment["alternate_pose"] = config[self.environment_set][self.env][
"alternate_pose"
]
self.environment["sensor"] = config[self.environment_set][self.env]["sensor"]
self.environment["gazebo_start_pose"] = [
config[self.environment_set][self.env]["circuit_positions_set"][0]
]
self.environment["gazebo_random_start_pose"] = config[self.environment_set][
self.env
]["circuit_positions_set"]
self.environment["telemetry_mask"] = config[self.environment_set][self.env][
"telemetry_mask"
]
self.environment["telemetry"] = config[self.environment_set][self.env][
"telemetry"
]

# Image
self.environment["height_image"] = config["agent"][self.agent][
"camera_params"
]["height"]
self.environment["width_image"] = config["agent"][self.agent]["camera_params"][
"width"
]
self.environment["center_image"] = config["agent"][self.agent][
"camera_params"
]["center_image"]
self.environment["image_resizing"] = config["agent"][self.agent][
"camera_params"
]["image_resizing"]
self.environment["new_image_size"] = config["agent"][self.agent][
"camera_params"
]["new_image_size"]
self.environment["raw_image"] = config["agent"][self.agent]["camera_params"][
"raw_image"
]
self.environment["num_regions"] = config["agent"][self.agent]["camera_params"][
"num_regions"
]
self.environment["lower_limit"] = config["agent"][self.agent]["camera_params"][
"lower_limit"
]
# States
self.environment["states"] = config["settings"]["states"]
self.environment["x_row"] = config["states"][self.states][0]

# Actions
self.environment["action_space"] = config["settings"]["actions"]
self.environment["actions"] = config["actions"][self.actions]

# Rewards
self.environment["reward_function"] = config["settings"]["rewards"]
self.environment["rewards"] = config["rewards"][self.rewards]
self.environment["min_reward"] = config["rewards"][self.rewards]["min_reward"]

# Algorithm
self.environment["critic_lr"] = config["algorithm"]["ppo"]["critic_lr"]
self.environment["actor_lr"] = config["algorithm"]["ppo"]["actor_lr"]
self.environment["model_name"] = config["algorithm"]["ppo"]["model_name"]
#
self.environment["ROS_MASTER_URI"] = config["ros"]["ros_master_uri"]
self.environment["GAZEBO_MASTER_URI"] = config["ros"]["gazebo_master_uri"]


# Sharing GPU
gpus = tf.config.experimental.list_physical_devices("GPU")
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)


from pydantic import BaseModel
class InferenceExecutorValidator(BaseModel):
settings: dict
agent: dict
environment: dict
algorithm: dict
inference: dict
# gazebo: dict


class Brain:
def __init__(self, sensors, actuators, handler, config=None):
self.camera = sensors.get_camera('camera_0')
self.motors = actuators.get_motor('motors_0')
self.handler = handler
self.config = config
self.suddenness_distance = [0]
self.st = 0
self.en = 0

args = {
'algorithm': 'ppo',
'environment': 'simple',
'agent': 'f1',
'filename': 'brains/gazebo/f1/config/config_inference_followline_ppo_f1_gazebo.yaml'
}

f = open(args['filename'], "r")
read_file = f.read()

config_file = yaml.load(read_file, Loader=yaml.FullLoader)

inference_params = {
"settings": self.get_settings(config_file),
"algorithm": self.get_algorithm(config_file, args['algorithm']),
"inference": self.get_inference(config_file, args['algorithm']),
"environment": self.get_environment(config_file, args['environment']),
"agent": self.get_agent(config_file, args['agent']),
}

params = InferenceExecutorValidator(**inference_params)

self.env_name = params.environment["params"]["env_name"]
env_params = params.environment["params"]
actions = params.environment["actions"]
env_params["actions"] = actions
self.environment = LoadEnvVariablesPPOGazebo(config_file)

self.env = gym.make(self.env_name, **self.environment.environment)

self.inference_file = params.inference["params"]["inference_ppo_tf_model_name"]
observation, _ = self.env.reset()

self.step = 1
self.state = observation

self.inferencer = InferencerWrapper("ppo", self.inference_file, env=config_file)

def get_algorithm(self, config_file: dict, input_algorithm: str) -> dict:
return {
"name": input_algorithm,
"params": config_file["algorithm"][input_algorithm],
}


def get_environment(self, config_file: dict, input_env: str) -> dict:
return {
"name": input_env,
"params": config_file["gazebo_environments"][input_env],
"actions": config_file["actions"],
}


def get_agent(self, config_file: dict, input_agent: str) -> dict:
return {
"name": input_agent,
"params": config_file["agent"][input_agent],
}


def get_inference(self, config_file: dict, input_inference: str) -> dict:
return {
"name": input_inference,
"params": config_file["inference"][input_inference],
}


def get_settings(self, config_file: dict) -> dict:
return {
"name": "settings",
"params": config_file["settings"],
}

def update_frame(self, frame_id, data):
"""Update the information to be shown in one of the GUI's frames.
Arguments:
frame_id {str} -- Id of the frame that will represent the data
data {*} -- Data to be shown in the frame. Depending on the type of frame (rgbimage, laser, pose3d, etc)
"""

self.handler.update_frame(frame_id, data)


def execute(self):
action = self.inferencer.inference(self.state)
action[0] = (action[0] + 1) * 4 # TODO scale it propperly
action[1] = action[1] * 1.5
observation, reward, done, info = self.env.step(action, self.step)
# print(f"{action}")
# self.st_prev=self.st
# self.st=time.time()
# print(f"debug: time lapsed between last iteration {self.st_prev-self.st}")


self.step += 1

self.state = observation

image = self.camera.getImage().data

self.update_frame('frame_0', image)

Original file line number Diff line number Diff line change
Expand Up @@ -29,8 +29,8 @@ retraining:

inference:
ddpg:
inference_ddpg_tf_actor_model_name: "/home/ruben/Desktop/RL-Studio/rl_studio/checkpoints/follow_line_gazebo_ddpg_f1_TensorFlow/20231029-171600_LAPCOMPLETEDCircuit-simple_States-sp5_Actions-continuous_BATCH_Rewards-followline_center_MaxReward-2801_Epoch-176/ACTOR"
inference_ddpg_tf_critic_model_name: "/home/ruben/Desktop/RL-Studio/rl_studio/checkpoints/follow_line_gazebo_ddpg_f1_TensorFlow/20231029-171600_LAPCOMPLETEDCircuit-simple_States-sp5_Actions-continuous_BATCH_Rewards-followline_center_MaxReward-2801_Epoch-176/CRITIC"
inference_ddpg_tf_actor_model_name: "/home/ruben/Desktop/RL-Studio/rl_studio/checkpoints/follow_line_gazebo_ddpg_f1_TensorFlow/v1to20/superfast-20231118-220658_IMPROVED_C-simple_S-sp5_A-continuous_MR-2025_E-3797/ACTOR"
inference_ddpg_tf_critic_model_name: "/home/ruben/Desktop/RL-Studio/rl_studio/checkpoints/follow_line_gazebo_ddpg_f1_TensorFlow/v1to20/superfast-20231118-220658_IMPROVED_C-simple_S-sp5_A-continuous_MR-2025_E-3797/CRITIC"

algorithm:
ddpg:
Expand Down
Loading

0 comments on commit 06b7286

Please sign in to comment.