This repository is the official implementation of PGIUN:Physics-Guided Implicit Unrolling Network for Accelerated MRI, accepted by TCI. If you have any questions, please feel free to contact me:"[email protected]"
To install requirements:
pip install -r requirements.txt
einops==0.4.1
ipdb==0.13.9
layers==0.1.5
matplotlib==3.5.2
numpy==1.20.3
PyYAML==6.0.1
scikit_image==0.19.3
scipy==1.7.3
setuptools==59.5.0
SimpleITK==2.3.1
thop==0.1.1.post2209072238
timm==0.5.4
torch==1.13.1+cu117
torchvision==0.14.1+cu117
tqdm==4.64.1
Data
│ ├── T1
│ │ ├── train
│ │ │ ├── train_1.npy
│ │ │ ├── train_2.npy
│ │ │ ├── ...
│ │ │ └── train_N.npy
│ │ └── valid
│ │ │ ├── valid_1.npy
│ │ │ ├── valid_2.npy
│ │ │ ├── ...
│ │ │ └── valid_N.npy
│ │ └── test
│ │ │ ├── test_1.npy
│ │ │ ├── test_2.npy
│ │ │ ├── ...
│ │ │ └── test_N.npy
│ │
│ ├── T2
│ │ ├── train
│ │ │ ├── train_1.npy
│ │ │ ├── train_2.npy
│ │ │ ├── ...
│ │ │ └── train_N.npy
│ │ └── valid
│ │ │ ├── valid_1.npy
│ │ │ ├── valid_2.npy
│ │ │ ├── ...
│ │ │ └── valid_N.npy
│ │ └── test
│ │ │ ├── test_1.npy
│ │ │ ├── test_2.npy
│ │ │ ├── ...
│ │ │ └── test_N.npy
│ │
│ │ └── ...
│ └── ...
│
└── ...
Configure
data_dir
androot_path
in theconfig.yaml
folder, and configure theconfig.yaml
path inoption.py
.
To train the model(s) in the paper, run this command:
python mc_rec_main.py --model pgiun --batch_size 1 --n_epochs 100 --mask random --gpuid 0 --modal T2 --acceleration 4 --data_name IXI
where
--model
provides the model name for the current run.
--mask
provides the mask used in the current run.
--acceleration
defines the acceleration ratio.
--data_name
provides the data name of the current run.
Other hyperparameters can be adjusted in the code as well.
To evaluate the model on MRI dataset, e.g., IXI, BraTS, fastMRI, run:
python mc_rec_main.py --model pgiun --batch_size 1 --n_epochs 100 --mask random --gpuid 0 --modal T2 --acceleration 4 --data_name IXI --train test
If you find it helpful, please cite our literature:
@article{jiang2024pgiun,
title={PGIUN: Physics-Guided Implicit Unrolling Network for Accelerated MRI},
author={Jiang, Jiawei and He, Zihan and Quan, Yueqian and Wu, Jie and Zheng, Jianwei},
journal={IEEE Transactions on Computational Imaging},
year={2024},
publisher={IEEE}
}