Current Project Tree:
.
├── cioffi_jr_tcc_sjbv.pdf
├── flowchart.png
├── mainArchitecture
│ ├── 1.WeatherForecasting
│ │ ├── METAR_TCC
│ │ │ ├── Data
│ │ │ │ └── SBRP.csv
│ │ │ ├── readme.md
│ │ │ ├── Scripts
│ │ │ │ ├── JupyterNotebook
│ │ │ │ │ ├── Metar_Predictor.ipynb
│ │ │ │ │ └── SBRP.csv
│ │ │ │ └── Metar_Predictor.py
│ │ │ └── SystemOutput
│ │ │ ├── METAR.joblib
│ │ │ └── tree
│ │ └── Readme.md
│ ├── 2.AnomalyDetection
│ │ ├── Data
│ │ │ ├── LSTM_output.csv
│ │ │ └── RawData.csv
│ │ ├── ExportedModels_Joblib
│ │ │ ├── anomalyDetector.joblib
│ │ │ └── LSTM.joblib
│ │ ├── readme.md
│ │ ├── ROS_Fundamentals
│ │ │ ├── CMakeLists.txt
│ │ │ ├── hello.cpp
│ │ │ ├── package.xml
│ │ │ └── pubvel.cpp
│ │ └── Scripts
│ │ ├── 2_anomalydetection_lstm.py
│ │ └── JupyterNotebook
│ │ ├── 2_AnomalyDetection_LSTM.ipynb
│ │ └── postProcessing
│ │ ├── LSTM_output.csv
│ │ └── postProcessing.ipynb
│ └── 3.ClusteringAlgorythm
│ ├── Data
│ │ └── LSTM_output.csv
│ ├── ExportedModels_Joblib
│ │ └── clusters.joblib
│ ├── readme.md
│ └── Scripts
│ └── JupyterNotebook
│ └── KMeans_Clustering
│ ├── KMeans_Clustering.ipynb
│ └── LSTM_output.csv
├── pip_dependencies
│ └── dependencies.txt
├── projectTree.txt
├── README.md
├── realTimeResponseModule
│ ├── anomalyDetection.py
│ ├── clustering.py
│ ├── dependencies
│ │ ├── anomalyDetector.joblib
│ │ ├── clusters.joblib
│ │ └── rawData.csv
│ ├── DJI_Tello_Drone
│ │ ├── constants.py
│ │ ├── dependencies
│ │ │ ├── bckp
│ │ │ │ ├── enforce_types.py
│ │ │ │ ├── __init__.py
│ │ │ │ ├── __pycache__
│ │ │ │ │ ├── enforce_types.cpython-38.pyc
│ │ │ │ │ ├── __init__.cpython-38.pyc
│ │ │ │ │ ├── swarm.cpython-38.pyc
│ │ │ │ │ └── tello.cpython-38.pyc
│ │ │ │ ├── swarm.py
│ │ │ │ └── tello.py
│ │ │ ├── fv_statistics.csv
│ │ │ └── readme.txt
│ │ ├── main.py
│ │ ├── missions.py
│ │ ├── __pycache__
│ │ │ ├── constants.cpython-38.pyc
│ │ │ └── missions.cpython-38.pyc
│ │ ├── README.md
│ │ └── Tello SDK Documentation EN_1.3_1122.pdf
│ ├── loadData.py
│ ├── main.py
│ ├── METAR_module
│ │ ├── dependencies
│ │ │ └── GradientBooster.pkl
│ │ ├── main.py
│ │ ├── predictor.py
│ │ ├── __pycache__
│ │ │ └── predictor.cpython-310.pyc
│ │ └── relations.pdf
│ ├── NoiseGenerator.py
│ ├── __pycache__
│ │ ├── anomalyDetection.cpython-310.pyc
│ │ ├── anomalyDetection.cpython-38.pyc
│ │ ├── clustering.cpython-310.pyc
│ │ ├── clustering.cpython-38.pyc
│ │ ├── loadData.cpython-310.pyc
│ │ ├── loadData.cpython-38.pyc
│ │ ├── NoiseGenerator.cpython-310.pyc
│ │ └── NoiseGenerator.cpython-38.pyc
│ └── README.md
└── SECURITY.md
32 directories, 70 files
-
General:
- This repository content is related to my Graduation's Final Paper
- Course: Bachelor Degree in Aeronautical Engineering at Sao Paulo State University-"Júlio de Mesquita Filho" (UNESP)
- Paper Title: "Sistema de Planejamento de Voo Autônomo Utilizando Inteligência Artificial" (PT-BR) | "Autonomous Flight Planning System Using Artificial Intelligence" (US-EN)
-
Architecture and Objective: The general objective of the work is to create an integrated system for mission planning of an autonomous aerial vehicle, from the pre-flight to real-time decision making. This goal can be specifically extended as follows:
- First module of the architecture: Implementation of supervised learning (multiple regression) for forecasting weather data at least 1 hour before the flight. In case of having the right conditions, the decision to execute the mission will be on responsible of the mission operator.
- Anomaly detection module: use of artificial neural networks to understand the flight data (time dependence between variables) and identification of anomalous patterns. Case a dataset is within a faulty time interval, the real-time decision will be made according to the levels of these behavioral patterns.
- Classification module in sublevels: use of unsupervised learning for the proper grouping (clustering) of previously identified incorrect patterns. In this step, the system should be able to subdivide into 3 large groups (or levels): lightweight categories, moderate and critical levels of these anomalies.