Skip to content

Commit

Permalink
Complex-valued variables (#121)
Browse files Browse the repository at this point in the history
* First step to implement complex variables functionality

* Move monomial function to correct file

* Rename ordvar to ordinary_variable

* Specialized complex routines for MonomialVector

* fix

* coefficienttype -> coefficient_type

* Remove incorrect method

* Add a (sometimes working) implementation for incomplete substitution

* Fix old syntax

* Format

* Remove TODO

* Add complex kind parameter to VT("name") constructor

* Remove iscomplex

* Remove dev dependency of MP, 0.5.3 has landed

* Add ComplexKind docstring

* Rename ComplexKind instances

* typo

* change substitution rules

* Rename polycvar macro

* Error for partial substitutions

* Format

* Complex substitution test cases

* More strict substitution rules: only allow ordinary variable

---------

Co-authored-by: Benoît Legat <[email protected]>
  • Loading branch information
projekter and blegat authored May 13, 2024
1 parent e866181 commit 121bd58
Show file tree
Hide file tree
Showing 8 changed files with 220 additions and 43 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,7 @@ Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[compat]
MultivariatePolynomials = "0.5"
MultivariatePolynomials = "0.5.3"
MutableArithmetics = "1"
Reexport = "1"
julia = "1"
Expand Down
10 changes: 5 additions & 5 deletions src/DynamicPolynomials.jl
Original file line number Diff line number Diff line change
Expand Up @@ -72,11 +72,11 @@ function MP.similar_variable(
) where {V,M,S}
return MP.similar_variable(P, S)
end
function MP.similar_variable(
::Union{PolyType{V,M},Type{<:PolyType{V,M}}},
s::Symbol,
) where {V,M}
return Variable(string(s), V, M)
function MP.similar_variable(p::PolyType{V,M}, s::Symbol) where {V,M}
return Variable(string(s), V, M, isreal(p) ? REAL : COMPLEX)
end
function MP.similar_variable(::Type{<:PolyType{V,M}}, s::Symbol) where {V,M}
return Variable(string(s), V, M, REAL) # we cannot infer this from the type
end

include("promote.jl")
Expand Down
9 changes: 7 additions & 2 deletions src/comp.jl
Original file line number Diff line number Diff line change
Expand Up @@ -27,14 +27,19 @@ function (==)(
x::Variable{<:AnyCommutative{CreationOrder}},
y::Variable{<:AnyCommutative{CreationOrder}},
)
return x.variable_order.order.id == y.variable_order.order.id
return x.variable_order.order.id == y.variable_order.order.id &&
x.kind == y.kind
end

function Base.isless(
x::Variable{<:AnyCommutative{CreationOrder}},
y::Variable{<:AnyCommutative{CreationOrder}},
)
return isless(y.variable_order.order.id, x.variable_order.order.id)
if x.variable_order.order.id == y.variable_order.order.id
return isless(y.kind, x.kind)
else
return isless(y.variable_order.order.id, x.variable_order.order.id)
end
end

# Comparison of Monomial
Expand Down
7 changes: 7 additions & 0 deletions src/mono.jl
Original file line number Diff line number Diff line change
Expand Up @@ -113,3 +113,10 @@ function __add_variables!(
mono.z[map] = tmp
return
end

# for efficiency reasons
function Base.conj(x::Monomial{V,M}) where {V<:Commutative,M}
cv = conj.(x.vars)
perm = sortperm(cv, rev = true)
return Monomial{V,M}(cv[perm], x.z[perm])
end
28 changes: 27 additions & 1 deletion src/monomial_vector.jl
Original file line number Diff line number Diff line change
Expand Up @@ -88,6 +88,28 @@ end
function MultivariatePolynomials.maxdegree(x::MonomialVector)
return isempty(x) ? 0 : maximum(sum.(x.Z))
end
# Complex-valued degrees for monomial vectors
for (fun, call, def, ret) in [
(:extdegree_complex, :extrema, (0, 0), :((min(v1, v2), max(v1, v2)))),
(:mindegree_complex, :minimum, 0, :(min(v1, v2))),
(:maxdegree_complex, :maximum, 0, :(max(v1, v2))),
]
eval(quote
function MultivariatePolynomials.$fun(x::MonomialVector)
isempty(x) && return $def
vars = variables(x)
@assert(!any(isrealpart, vars) && !any(isimagpart, vars))
grouping = isconj.(vars)
v1 = $call(sum(z[grouping]) for z in x.Z)
grouping = map(!, grouping)
v2 = $call(sum(z[grouping]) for z in x.Z)
return $ret
end
end)
end
# faster complex-related functions
Base.isreal(x::MonomialVector) = all(isreal, x.vars)
Base.conj(x::MonomialVector) = MonomialVector(conj.(x.vars), x.Z)

MP.variables(m::Union{Monomial,MonomialVector}) = m.vars

Expand Down Expand Up @@ -118,7 +140,11 @@ end
# TODO replace by MP function
function _error_for_negative_degree(deg)
if deg < 0
throw(ArgumentError("The degree should be a nonnegative number but the provided degree `$deg` is negative."))
throw(
ArgumentError(
"The degree should be a nonnegative number but the provided degree `$deg` is negative.",
),
)
end
end

Expand Down
53 changes: 38 additions & 15 deletions src/subs.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,23 +9,46 @@ end

function fillmap!(
vals,
vars::Vector{<:Variable{<:NonCommutative}},
vars::Vector{<:Variable{C}},
s::MP.Substitution,
)
for j in eachindex(vars)
if vars[j] == s.first
vals[j] = s.second
) where {C}
# We may assign a complex or real variable to its value (ordinary substitution).
# We follow the following rules:
# - If a single substitution rule determines the value of a real variable, just substitute it.
# - If a single substitution rule determines the value of a complex variable or its conjugate, substitute the appropriate
# value whereever something related to this variable is found (i.e., the complex variable, the conjugate variable, or
# its real or imaginary part)
# - If a single substitution rule determines the value of the real or imaginary part of a complex variable alone, then only
# replace the real or imaginary parts if they occur explicitly. Don't do a partial substitution, i.e., `z` with the rule
# `zᵣ => 1` is left alone and not changed into `1 + im*zᵢ`. Even if both the real and imaginary parts are substituted as
# two individual rules (which we don't know of in this method), `z` will not be replaced.
if s.first.kind == REAL
for j in eachindex(vars)
if vars[j] == s.first
vals[j] = s.second
C == Commutative && break
end
end
else
s.first.kind == COMPLEX || throw(
ArgumentError(
"Substitution with complex variables requires the ordinary_variable in the substitution specification",
),
)
for j in eachindex(vars)
if vars[j].variable_order.order.id ==
s.first.variable_order.order.id
if vars[j].kind == COMPLEX
vals[j] = s.second
elseif vars[j].kind == CONJ
vals[j] = conj(s.second)
elseif vars[j].kind == REAL_PART
vals[j] = real(s.second)
else
vals[j] = imag(s.second)
end
end
end
end
end
function fillmap!(
vals,
vars::Vector{<:Variable{<:Commutative}},
s::MP.Substitution,
)
j = findfirst(isequal(s.first), vars)
if j !== nothing
vals[j] = s.second
end
end
function fillmap!(vals, vars, s::MP.AbstractMultiSubstitution)
Expand Down
133 changes: 116 additions & 17 deletions src/var.jl
Original file line number Diff line number Diff line change
@@ -1,20 +1,34 @@
export Variable, @polyvar, @ncpolyvar
export Variable, @polyvar, @ncpolyvar, @complex_polyvar

function polyarrayvar(variable_order, monomial_order, prefix, indices...)
function polyarrayvar(
variable_order,
monomial_order,
complex_kind,
prefix,
indices...,
)
return map(
i -> Variable(
"$(prefix)[$(join(i, ","))]",
variable_order,
monomial_order,
complex_kind,
),
Iterators.product(indices...),
)
end

function buildpolyvar(var, variable_order, monomial_order)
function buildpolyvar(var, variable_order, monomial_order, complex_kind)
if isa(var, Symbol)
var,
:($(esc(var)) = $Variable($"$var", $variable_order, $monomial_order))
:(
$(esc(var)) = $Variable(
$"$var",
$variable_order,
$monomial_order,
$complex_kind,
)
)
else
isa(var, Expr) || error("Expected $var to be a variable name")
Base.Meta.isexpr(var, :ref) ||
Expand All @@ -28,26 +42,28 @@ function buildpolyvar(var, variable_order, monomial_order)
$(esc(varname)) = polyarrayvar(
$(variable_order),
$(monomial_order),
$(complex_kind),
$prefix,
$(esc.(var.args[2:end])...),
)
)
end
end

function buildpolyvars(args, variable_order, monomial_order)
function buildpolyvars(args, variable_order, monomial_order, complex_kind)
vars = Symbol[]
exprs = []
for arg in args
var, expr = buildpolyvar(arg, variable_order, monomial_order)
var, expr =
buildpolyvar(arg, variable_order, monomial_order, complex_kind)
push!(vars, var)
push!(exprs, expr)
end
return vars, exprs
end

# Inspired from `JuMP.Containers._extract_kw_args`
function _extract_kw_args(args, variable_order)
function _extract_kw_args(args, variable_order, complex_kind)
positional_args = Any[]
monomial_order = :($(MP.Graded{MP.LexOrder}))
for arg in args
Expand All @@ -56,29 +72,42 @@ function _extract_kw_args(args, variable_order)
variable_order = esc(arg.args[2])
elseif arg.args[1] == :monomial_order
monomial_order = esc(arg.args[2])
elseif arg.args[1] == :complex
complex_kind = arg.args[2] == :true ? COMPLEX : REAL
else
error("Unrecognized keyword argument `$(arg.args[1])`")
end
else
push!(positional_args, arg)
end
end
return positional_args, variable_order, monomial_order
return positional_args, variable_order, monomial_order, complex_kind
end

# Variable vector x returned garanteed to be sorted so that if p is built with x then vars(p) == x
macro polyvar(args...)
pos_args, variable_order, monomial_order =
_extract_kw_args(args, :($(Commutative{CreationOrder})))
vars, exprs = buildpolyvars(pos_args, variable_order, monomial_order)
pos_args, variable_order, monomial_order, complex_kind =
_extract_kw_args(args, :($(Commutative{CreationOrder})), REAL)
vars, exprs =
buildpolyvars(pos_args, variable_order, monomial_order, complex_kind)
return :($(foldl((x, y) -> :($x; $y), exprs, init = :()));
$(Expr(:tuple, esc.(vars)...)))
end

macro ncpolyvar(args...)
pos_args, variable_order, monomial_order =
_extract_kw_args(args, :($(NonCommutative{CreationOrder})))
vars, exprs = buildpolyvars(pos_args, variable_order, monomial_order)
pos_args, variable_order, monomial_order, complex_kind =
_extract_kw_args(args, :($(NonCommutative{CreationOrder})), REAL)
vars, exprs =
buildpolyvars(pos_args, variable_order, monomial_order, complex_kind)
return :($(foldl((x, y) -> :($x; $y), exprs, init = :()));
$(Expr(:tuple, esc.(vars)...)))
end

macro complex_polyvar(args...)
pos_args, variable_order, monomial_order, complex_kind =
_extract_kw_args(args, :($(Commutative{CreationOrder})), COMPLEX)
vars, exprs =
buildpolyvars(pos_args, variable_order, monomial_order, complex_kind)
return :($(foldl((x, y) -> :($x; $y), exprs, init = :()));
$(Expr(:tuple, esc.(vars)...)))
end
Expand Down Expand Up @@ -114,19 +143,54 @@ function instantiate(::Type{NonCommutative{O}}) where {O}
return NonCommutative(instantiate(O))
end

"""
ComplexKind
The type used to identify whether a variable is complex-valued. It has the following instances:
- `REAL`: the variable is real-valued, [`conj`](@ref) and [`real`](@ref) are identities, [`imag`](@ref) is zero.
- `COMPLEX`: the variable is a declared complex-valued variable with distinct conjugate, real, and imaginary part.
[`ordinary_variable`](@ref) is an identity.
- `CONJ`: the variable is the conjugate of a declared complex-valued variable. [`ordinary_variable`](@ref) is equal to
[`conj`](@ref). It will print with an over-bar.
- `REAL_PART`: the variable is the real part of a complex-valued variable. It is real-valued itself: [`conj`](@ref) and
[`real`](@ref) are identities, [`imag`](@ref) is zero. [`ordinary_variable`](@ref) will give back the original complex-valued
_declared_ variable from which the real part was extracted. It will print with an `ᵣ` subscript.
- `IMAG_PART`: the variable is the imaginary part of a declared complex-valued variable (or the negative imaginary part of the
conjugate of a declared complex-valued variable). It is real-valued itself: [`conj`](@ref) and [`real`](@ref) are identities,
[`imag`](@ref) is zero. [`ordinary_variable`](@ref) will give back the original complex-valued _declared_ variable from which
the imaginary part was extracted. It will print with an `ᵢ` subscript.
"""
@enum ComplexKind REAL COMPLEX CONJ REAL_PART IMAG_PART

struct Variable{V,M} <: AbstractVariable
name::String
kind::ComplexKind
variable_order::V

function Variable{V,M}(name::AbstractString) where {V<:AbstractVariableOrdering,M<:MP.AbstractMonomialOrdering}
return new{V,M}(convert(String, name), instantiate(V))
function Variable{V,M}(
name::AbstractString,
kind::ComplexKind = REAL,
) where {V<:AbstractVariableOrdering,M<:MP.AbstractMonomialOrdering}
return new{V,M}(convert(String, name), kind, instantiate(V))
end

function Variable(
name::AbstractString,
::Type{V},
::Type{M},
kind::ComplexKind = REAL,
) where {V<:AbstractVariableOrdering,M<:MP.AbstractMonomialOrdering}
return new{V,M}(convert(String, name), instantiate(V))
return new{V,M}(convert(String, name), kind, instantiate(V))
end

function Variable(
from::Variable{V,M},
kind::ComplexKind,
) where {V<:AbstractVariableOrdering,M<:MP.AbstractMonomialOrdering}
(from.kind == REAL && kind == REAL) ||
(from.kind != REAL && kind != REAL) ||
error("Cannot change the complex type of an existing variable")
return new{V,M}(from.name, kind, from.variable_order)
end
end

Expand All @@ -150,6 +214,41 @@ MP.ordering(::Type{Variable{V,M}}) where {V,M} = M

iscomm(::Type{Variable{C}}) where {C} = C

Base.isreal(x::Variable{C}) where {C} = x.kind != COMPLEX && x.kind != CONJ
MP.isrealpart(x::Variable{C}) where {C} = x.kind == REAL_PART
MP.isimagpart(x::Variable{C}) where {C} = x.kind == IMAG_PART
MP.isconj(x::Variable{C}) where {C} = x.kind == CONJ
function MP.ordinary_variable(x::Variable)
return x.kind == REAL || x.kind == COMPLEX ? x : Variable(x, COMPLEX)
end

function Base.conj(x::Variable)
if x.kind == COMPLEX
return Variable(x, CONJ)
elseif x.kind == CONJ
return Variable(x, COMPLEX)
else
return x
end
end

function Base.real(x::Variable)
if x.kind == COMPLEX || x.kind == CONJ
return Variable(x, REAL_PART)
else
return x
end
end
function Base.imag(x::Variable{V,M}) where {V,M}
if x.kind == COMPLEX
return Variable(x, IMAG_PART)
elseif x.kind == CONJ
return _Term{V,M,Int}(-1, Monomial(Variable(x, IMAG_PART)))
else
return MA.Zero()
end
end

function mergevars_to!(
vars::Vector{PV},
varsvec::Vector{Vector{PV}},
Expand Down
Loading

0 comments on commit 121bd58

Please sign in to comment.