Skip to content

Commit

Permalink
build based on 29c1647
Browse files Browse the repository at this point in the history
  • Loading branch information
Documenter.jl committed Nov 28, 2024
1 parent 6d292bd commit 0d86dfd
Show file tree
Hide file tree
Showing 7 changed files with 19 additions and 19 deletions.
2 changes: 1 addition & 1 deletion dev/.documenter-siteinfo.json
Original file line number Diff line number Diff line change
@@ -1 +1 @@
{"documenter":{"julia_version":"1.11.1","generation_timestamp":"2024-11-14T14:25:05","documenter_version":"1.8.0"}}
{"documenter":{"julia_version":"1.11.1","generation_timestamp":"2024-11-28T11:31:34","documenter_version":"1.8.0"}}
4 changes: 2 additions & 2 deletions dev/differentiation/index.html
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@
differentiate(p, x) # should return 6xy + 1
differentiate(p, x, Val{1}()) # equivalent to the above
differentiate(p, (x, y)) # should return [6xy+1, 3x^2+1]
differentiate( [x^2+y, z^2+4x], [x, y, z]) # should return [2x 1 0; 4 0 2z]</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/JuliaAlgebra/MultivariatePolynomials.jl/blob/3bab38386d06039d98b5ffae4f092aac21746ae5/src/differentiation.jl#L1-L30">source</a></section></article><h1 id="Antidifferentiation"><a class="docs-heading-anchor" href="#Antidifferentiation">Antidifferentiation</a><a id="Antidifferentiation-1"></a><a class="docs-heading-anchor-permalink" href="#Antidifferentiation" title="Permalink"></a></h1><p>Given a polynomial, say <code>p(x, y) = 3x^2y + x + 2y + 1</code>, we can antidifferentiate it by a variable, say <code>x</code> and get <span>$\int_0^x p(X, y)\mathrm{d}X = x^3y + 1/2x^2 + 2xy + x$</span>. We can also antidifferentiate it by both of its variable and get the vector <code>[x^3y + 1/2x^2 + 2xy + x, 3/2x^2y^2 + xy + y^2 + y]</code>.</p><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="MultivariatePolynomials.antidifferentiate" href="#MultivariatePolynomials.antidifferentiate"><code>MultivariatePolynomials.antidifferentiate</code></a><span class="docstring-category">Function</span><span class="is-flex-grow-1 docstring-article-toggle-button" title="Collapse docstring"></span></header><section><div><pre><code class="language-julia hljs">antidifferentiate(p::AbstractPolynomialLike, v::AbstractVariable, deg::Union{Int, Val}=1)</code></pre><p>Antidifferentiate <code>deg</code> times the polynomial <code>p</code> by the variable <code>v</code>. The free constant involved by the antidifferentiation is set to 0.</p><pre><code class="nohighlight hljs">antidifferentiate(p::AbstractPolynomialLike, vs, deg::Union{Int, Val}=1)</code></pre><p>Antidifferentiate <code>deg</code> times the polynomial <code>p</code> by the variables of the vector or tuple of variable <code>vs</code> and return an array of dimension <code>deg</code>. It is recommended to pass <code>deg</code> as a <code>Val</code> instance when the degree is known at compile time, e.g. <code>antidifferentiate(p, v, Val{2}())</code> instead of <code>antidifferentiate(p, x, 2)</code>, as this will help the compiler infer the return type.</p><p><strong>Examples</strong></p><pre><code class="language-julia hljs">p = 3x^2*y + x + 2y + 1
differentiate( [x^2+y, z^2+4x], [x, y, z]) # should return [2x 1 0; 4 0 2z]</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/JuliaAlgebra/MultivariatePolynomials.jl/blob/29c1647fb1633209b2bccc79e0bdbc6dc5bc2567/src/differentiation.jl#L1-L30">source</a></section></article><h1 id="Antidifferentiation"><a class="docs-heading-anchor" href="#Antidifferentiation">Antidifferentiation</a><a id="Antidifferentiation-1"></a><a class="docs-heading-anchor-permalink" href="#Antidifferentiation" title="Permalink"></a></h1><p>Given a polynomial, say <code>p(x, y) = 3x^2y + x + 2y + 1</code>, we can antidifferentiate it by a variable, say <code>x</code> and get <span>$\int_0^x p(X, y)\mathrm{d}X = x^3y + 1/2x^2 + 2xy + x$</span>. We can also antidifferentiate it by both of its variable and get the vector <code>[x^3y + 1/2x^2 + 2xy + x, 3/2x^2y^2 + xy + y^2 + y]</code>.</p><article class="docstring"><header><a class="docstring-article-toggle-button fa-solid fa-chevron-down" href="javascript:;" title="Collapse docstring"></a><a class="docstring-binding" id="MultivariatePolynomials.antidifferentiate" href="#MultivariatePolynomials.antidifferentiate"><code>MultivariatePolynomials.antidifferentiate</code></a><span class="docstring-category">Function</span><span class="is-flex-grow-1 docstring-article-toggle-button" title="Collapse docstring"></span></header><section><div><pre><code class="language-julia hljs">antidifferentiate(p::AbstractPolynomialLike, v::AbstractVariable, deg::Union{Int, Val}=1)</code></pre><p>Antidifferentiate <code>deg</code> times the polynomial <code>p</code> by the variable <code>v</code>. The free constant involved by the antidifferentiation is set to 0.</p><pre><code class="nohighlight hljs">antidifferentiate(p::AbstractPolynomialLike, vs, deg::Union{Int, Val}=1)</code></pre><p>Antidifferentiate <code>deg</code> times the polynomial <code>p</code> by the variables of the vector or tuple of variable <code>vs</code> and return an array of dimension <code>deg</code>. It is recommended to pass <code>deg</code> as a <code>Val</code> instance when the degree is known at compile time, e.g. <code>antidifferentiate(p, v, Val{2}())</code> instead of <code>antidifferentiate(p, x, 2)</code>, as this will help the compiler infer the return type.</p><p><strong>Examples</strong></p><pre><code class="language-julia hljs">p = 3x^2*y + x + 2y + 1
antidifferentiate(p, x) # should return 3x^3* + 1/2*x + 2xy + x
antidifferentiate(p, x, Val{1}()) # equivalent to the above
antidifferentiate(p, (x, y)) # should return [3x^3* + 1/2*x + 2xy + x, 3/2x^2*y^2 + xy + y^2 + y]</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/JuliaAlgebra/MultivariatePolynomials.jl/blob/3bab38386d06039d98b5ffae4f092aac21746ae5/src/antidifferentiation.jl#L1-L24">source</a></section></article></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../substitution/">« Substitution</a><a class="docs-footer-nextpage" href="../division/">Division »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.8.0 on <span class="colophon-date" title="Thursday 14 November 2024 14:25">Thursday 14 November 2024</span>. Using Julia version 1.11.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
antidifferentiate(p, (x, y)) # should return [3x^3* + 1/2*x + 2xy + x, 3/2x^2*y^2 + xy + y^2 + y]</code></pre></div><a class="docs-sourcelink" target="_blank" href="https://github.com/JuliaAlgebra/MultivariatePolynomials.jl/blob/29c1647fb1633209b2bccc79e0bdbc6dc5bc2567/src/antidifferentiation.jl#L1-L24">source</a></section></article></article><nav class="docs-footer"><a class="docs-footer-prevpage" href="../substitution/">« Substitution</a><a class="docs-footer-nextpage" href="../division/">Division »</a><div class="flexbox-break"></div><p class="footer-message">Powered by <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> and the <a href="https://julialang.org/">Julia Programming Language</a>.</p></nav></div><div class="modal" id="documenter-settings"><div class="modal-background"></div><div class="modal-card"><header class="modal-card-head"><p class="modal-card-title">Settings</p><button class="delete"></button></header><section class="modal-card-body"><p><label class="label">Theme</label><div class="select"><select id="documenter-themepicker"><option value="auto">Automatic (OS)</option><option value="documenter-light">documenter-light</option><option value="documenter-dark">documenter-dark</option><option value="catppuccin-latte">catppuccin-latte</option><option value="catppuccin-frappe">catppuccin-frappe</option><option value="catppuccin-macchiato">catppuccin-macchiato</option><option value="catppuccin-mocha">catppuccin-mocha</option></select></div></p><hr/><p>This document was generated with <a href="https://github.com/JuliaDocs/Documenter.jl">Documenter.jl</a> version 1.8.0 on <span class="colophon-date" title="Thursday 28 November 2024 11:31">Thursday 28 November 2024</span>. Using Julia version 1.11.1.</p></section><footer class="modal-card-foot"></footer></div></div></div></body></html>
Loading

0 comments on commit 0d86dfd

Please sign in to comment.