Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add DCGRU temporal layer #448

Merged
merged 5 commits into from
Jul 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/GraphNeuralNetworks.jl
Original file line number Diff line number Diff line change
Expand Up @@ -77,6 +77,7 @@ export
A3TGCN,
GConvLSTM,
GConvGRU,
DCGRU,

# layers/pool
GlobalPool,
Expand Down
83 changes: 83 additions & 0 deletions src/layers/temporalconv.jl
Original file line number Diff line number Diff line change
Expand Up @@ -401,6 +401,89 @@ Flux.Recur(tgcn::GConvLSTMCell) = Flux.Recur(tgcn, tgcn.state0)
_applylayer(l::Flux.Recur{GConvLSTMCell}, g::GNNGraph, x) = l(g, x)
_applylayer(l::Flux.Recur{GConvLSTMCell}, g::GNNGraph) = l(g)

struct DCGRUCell
in::Int
out::Int
state0
k::Int
dconv_u::DConv
dconv_r::DConv
dconv_c::DConv
end

Flux.@functor DCGRUCell

function DCGRUCell(ch::Pair{Int,Int}, k::Int, n::Int; bias = true, init = glorot_uniform, init_state = Flux.zeros32)
in, out = ch
dconv_u = DConv((in + out) => out, k; bias=bias, init=init)
dconv_r = DConv((in + out) => out, k; bias=bias, init=init)
dconv_c = DConv((in + out) => out, k; bias=bias, init=init)
state0 = init_state(out, n)
return DCGRUCell(in, out, state0, k, dconv_u, dconv_r, dconv_c)
end

function (dcgru::DCGRUCell)(h, g::GNNGraph, x)
h̃ = vcat(x, h)
z = dcgru.dconv_u(g, h̃)
z = NNlib.sigmoid_fast.(z)
r = dcgru.dconv_r(g, h̃)
r = NNlib.sigmoid_fast.(r)
ĥ = vcat(x, h .* r)
c = dcgru.dconv_c(g, ĥ)
c = tanh.(c)
h = z.* h + (1 .- z) .* c
return h, h
end

function Base.show(io::IO, dcgru::DCGRUCell)
print(io, "DCGRUCell($(dcgru.in) => $(dcgru.out), $(dcgru.k))")
end

"""
DCGRU(in => out, k, n; [bias, init, init_state])

Diffusion Convolutional Recurrent Neural Network (DCGRU) layer from the paper [Diffusion Convolutional Recurrent Neural
Network: Data-driven Traffic Forecasting](https://arxiv.org/pdf/1707.01926).

Performs a Diffusion Convolutional layer to model spatial dependencies, followed by a Gated Recurrent Unit (GRU) cell to model temporal dependencies.

# Arguments

- `in`: Number of input features.
- `out`: Number of output features.
- `k`: Diffusion step.
- `n`: Number of nodes in the graph.
- `bias`: Add learnable bias. Default `true`.
- `init`: Weights' initializer. Default `glorot_uniform`.
- `init_state`: Initial state of the hidden stat of the LSTM layer. Default `zeros32`.

# Examples

```jldoctest
julia> g1, x1 = rand_graph(5, 10), rand(Float32, 2, 5);

julia> dcgru = DCGRU(2 => 5, 2, g1.num_nodes);

julia> y = dcgru(g1, x1);

julia> size(y)
(5, 5)

julia> g2, x2 = rand_graph(5, 10), rand(Float32, 2, 5, 30);

julia> z = dcgru(g2, x2);

julia> size(z)
(5, 5, 30)
```
"""
DCGRU(ch, k, n; kwargs...) = Flux.Recur(DCGRUCell(ch, k, n; kwargs...))
Flux.Recur(dcgru::DCGRUCell) = Flux.Recur(dcgru, dcgru.state0)

(l::Flux.Recur{DCGRUCell})(g::GNNGraph) = GNNGraph(g, ndata = l(g, node_features(g)))
_applylayer(l::Flux.Recur{DCGRUCell}, g::GNNGraph, x) = l(g, x)
_applylayer(l::Flux.Recur{DCGRUCell}, g::GNNGraph) = l(g)

function (l::GINConv)(tg::TemporalSnapshotsGNNGraph, x::AbstractVector)
return l.(tg.snapshots, x)
end
Expand Down
8 changes: 8 additions & 0 deletions test/layers/temporalconv.jl
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,14 @@ end
@test model(g1) isa GNNGraph
end

@testset "DCGRU" begin
dcgru = DCGRU(in_channel => out_channel, 2, g1.num_nodes)
@test size(Flux.gradient(x -> sum(dcgru(g1, x)), g1.ndata.x)[1]) == (in_channel, N)
model = GNNChain(DCGRU(in_channel => out_channel, 2, g1.num_nodes), Dense(out_channel, 1))
@test size(model(g1, g1.ndata.x)) == (1, N)
@test model(g1) isa GNNGraph
end

@testset "GINConv" begin
ginconv = GINConv(Dense(in_channel => out_channel),0.3)
@test length(ginconv(tg, tg.ndata.x)) == S
Expand Down
Loading