Skip to content

JuliaImages/IntegralArrays.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

31 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

IntegralArrays

Julia Implementation of Integral Arrays

Build status

Coverage status

IntegralArrays are useful for summing arrays over rectangular regions. Once created, the sum of an arbitrarily-large rectangular region can be computed in O(2^d) adds, where d is the dimensionality.

Demo:

julia> using IntegralArrays, IntervalSets

julia> A = [1 2 3 4 5;
            10 20 30 40 50;
            100 200 300 400 500]
3×5 Matrix{Int64}:
   1    2    3    4    5
  10   20   30   40   50
 100  200  300  400  500

julia> Ai = IntegralArray(A)
3×5 IntegralArray{Int64, 2, Matrix{Int64}}:
   1    3    6    10    15
  11   33   66   110   165
 111  333  666  1110  1665

julia> sum(A[1:2, 1:2]) == Ai[2, 2]
true

julia> sum(A[1:3, 2:4]) == Ai[1..3, 2..4] 
true

When one needs to compute the sum/average of all blocks extracted from an image, pre-building the integral array usually provides a more efficient computation.

using BenchmarkTools, IntegralArrays, IntervalSets

# simplified 3x3 mean filter; only for demo purpose
function mean_filter_naive!(out, X)
    Δ = CartesianIndex(1, 1)
    for i in CartesianIndex(2, 2):CartesianIndex(size(X).-1)
        block = @view X[i-Δ: i+Δ]
        out[i] = mean(block)
    end
    return out
end
function mean_filter_integral!(out, X)
    iX = IntegralArray(X)
    for i in CartesianIndex(2, 2):CartesianIndex(size(X).-1)
        x, y = i.I
        out[i] = iX[x±1, y±1]/9
    end
    return out
end

X = Float32.(rand(1:5, 64, 64));
m1 = copy(X);
m2 = copy(X);

@btime mean_filter_naive!($m1, $X); # 65.078 μs (0 allocations: 0 bytes)
@btime mean_filter_integral!($m2, $X); # 12.161 μs (4 allocations: 16.17 KiB)
m1 == m2 # true