Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added rfft! and irfft! functionality through PaddedRFFTArray type. #54

Open
wants to merge 14 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/FFTW.jl
Original file line number Diff line number Diff line change
Expand Up @@ -44,5 +44,6 @@ end

include("fft.jl")
include("dct.jl")
include("rfft!.jl")

end # module
223 changes: 223 additions & 0 deletions src/rfft!.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,223 @@
import Base: IndexStyle, getindex, setindex!, eltype, \, similar, copy, real, read!

export PaddedRFFTArray, plan_rfft!, rfft!, plan_irfft!, plan_brfft!, brfft!, irfft!



# As the time this code was written the new `ReinterpretArray` introduced in
# Julia v0.7 had major performace issues. Those issues were bypassed with the usage of the
# custom getindex and setindex! below. Hopefully, once the performance issues with ReinterpretArray
# are solved we can just index the reinterpret array directly.

struct PaddedRFFTArray{T<:fftwReal,N,Nm1,L} <: DenseArray{Complex{T},N}
data::Array{T,N}
r::SubArray{T,N,Array{T,N},Tuple{Base.OneTo{Int},Vararg{Base.Slice{Base.OneTo{Int}},Nm1}},L} # Real view skipping padding
c::Base.ReinterpretArray{Complex{T},N,T,Array{T,N}}

function PaddedRFFTArray{T,N,Nm1,L}(rr::Array{T,N},nx::Int) where {T<:fftwReal,N,Nm1,L}
fsize = size(rr)[1]
iseven(fsize) || throw(
ArgumentError("First dimension of allocated array must have even number of elements"))
(nx == fsize-2 || nx == fsize-1) || throw(
ArgumentError("Number of elements on the first dimension of array must be either 1 or 2 less than the number of elements on the first dimension of the allocated array"))
c = reinterpret(Complex{T}, rr)
r = view(rr, Base.OneTo(nx), ntuple(i->Colon(),Val(Nm1))...)
return new{T, N, Nm1, L}(rr,r,c)
end # function
end # struct

@generated function PaddedRFFTArray{T,N}(rr::Array{T,N},nx::Int) where {T<:fftwReal,N}
:(PaddedRFFTArray{T,N,$(N-1),$(N === 1 ? true : false)}(rr,nx))
end

@inline real(S::PaddedRFFTArray) = S.r

@inline complex_view(S::PaddedRFFTArray) = S.c

@inline data(S::PaddedRFFTArray) = S.data

copy(S::PaddedRFFTArray) = PaddedRFFTArray(copy(data(S)),size(real(S),1))

similar(f::PaddedRFFTArray,::Type{T},dims::Tuple{Vararg{Int,N}}) where {T, N} =
PaddedRFFTArray{T}(dims)
similar(f::PaddedRFFTArray{T,N,L},dims::NTuple{N2,Int}) where {T,N,L,N2} =
PaddedRFFTArray{T}(dims)
similar(f::PaddedRFFTArray,::Type{T}) where {T} =
PaddedRFFTArray{T}(size(real(f)))
similar(f::PaddedRFFTArray{T,N}) where {T,N} =
PaddedRFFTArray{T,N}(similar(data(f)), size(real(f),1))

size(S::PaddedRFFTArray) =
size(complex_view(S))

IndexStyle(::Type{T}) where {T<:PaddedRFFTArray} =
IndexLinear()

@inline function getindex(A::PaddedRFFTArray{T,N}, i2::Integer) where {T,N}
d = data(A)
i = 2i2
@boundscheck checkbounds(d,i)
@inbounds begin
return Complex{T}(d[i-1],d[i])
end
end

@inline @generated function getindex(A::PaddedRFFTArray{T,N}, I2::Vararg{Integer,N}) where {T,N}
ip = :(2*I2[1])
t = Expr(:tuple)
for i=2:N
push!(t.args,:(I2[$i]))
end
quote
d = data(A)
i = $ip
I = $t
@boundscheck checkbounds(d,i,I...)
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Shouldn't it also check bounds with i-1?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oh, I guess since ip=2*I2[1], if it is in-bounds then i-1 must also be in-bounds.

@inbounds begin
return Complex{T}(d[i-1,I...],d[i,I...])
end
end
end

@inline function setindex!(A::PaddedRFFTArray{T,N},x, i2::Integer) where {T,N}
d = data(A)
i = 2i2
@boundscheck checkbounds(d,i)
@inbounds begin
d[i-1] = real(x)
d[i] = imag(x)
end
A
end

@inline @generated function setindex!(A::PaddedRFFTArray{T,N}, x, I2::Vararg{Integer,N}) where {T,N}
ip = :(2*I2[1])
t = Expr(:tuple)
for i=2:N
push!(t.args,:(I2[$i]))
end
quote
d = data(A)
i = $ip
I = $t
@boundscheck checkbounds(d,i,I...)
@inbounds begin
d[i-1,I...] = real(x)
d[i,I...] = imag(x)
end
A
end
end

PaddedRFFTArray(rr::Array{T,N},nx::Int) where {T<:fftwReal,N} = PaddedRFFTArray{T,N}(rr,nx)

function PaddedRFFTArray{T}(ndims::Vararg{Integer,N}) where {T,N}
fsize = (ndims[1]÷2 + 1)*2
a = zeros(T,(fsize, ndims[2:end]...))
PaddedRFFTArray{T,N}(a, ndims[1])
end

PaddedRFFTArray{T}(ndims::NTuple{N,Integer}) where {T,N} =
PaddedRFFTArray{T}(ndims...)

PaddedRFFTArray(ndims::Vararg{Integer,N}) where N =
PaddedRFFTArray{Float64}(ndims...)

PaddedRFFTArray(ndims::NTuple{N,Integer}) where N =
PaddedRFFTArray{Float64}(ndims...)

function PaddedRFFTArray{T}(a::AbstractArray{<:Real,N}) where {T<:fftwReal,N}
t = PaddedRFFTArray{T}(size(a))
@inbounds copyto!(t.r, a)
return t
end

PaddedRFFTArray(a::AbstractArray{<:Real}) = PaddedRFFTArray{Float64}(a)

function PaddedRFFTArray(stream, dims)
field = PaddedRFFTArray(dims)
return read!(stream,field)
end

function PaddedRFFTArray{T}(stream, dims) where T
field = PaddedRFFTArray{T}(dims)
return read!(stream,field)
end

function read!(file::AbstractString, field::PaddedRFFTArray)
open(file) do io
return read!(io,field)
end
end

# Read a binary file of an unpaded array directly to a PaddedRFFT array, without the need
# of the creation of a intermediary Array. If the data is already padded then the user
# should just use PaddedRFFTArray{T}(read("file",unpaddeddim),nx)
function read!(stream::IO, field::PaddedRFFTArray{T,N,L}) where {T,N,L}
rr = data(field)
dims = size(real(field))
nx = dims[1]
nb = sizeof(T)*nx
npencils = prod(dims)÷nx
npad = iseven(nx) ? 2 : 1
for i=0:(npencils-1)
unsafe_read(stream,Ref(rr,Int((nx+npad)*i+1)),nb)
end
return field
end


###########################################################################################
# Foward plans

function plan_rfft!(X::PaddedRFFTArray{T,N}, region;
flags::Integer=ESTIMATE,
timelimit::Real=NO_TIMELIMIT) where {T<:fftwReal,N}

(1 in region) || throw(ArgumentError("The first dimension must always be transformed"))
return rFFTWPlan{T,FORWARD,true,N}(real(X), complex_view(X), region, flags, timelimit)
end

plan_rfft!(f::PaddedRFFTArray;kws...) = plan_rfft!(f, 1:ndims(f); kws...)

*(p::rFFTWPlan{T,FORWARD,true,N},f::PaddedRFFTArray{T,N}) where {T<:fftwReal,N} =
(mul!(complex_view(f), p, real(f)); f)

rfft!(f::PaddedRFFTArray, region=1:ndims(f)) = plan_rfft!(f, region) * f

function \(p::rFFTWPlan{T,FORWARD,true,N},f::PaddedRFFTArray{T,N}) where {T<:fftwReal,N}
isdefined(p,:pinv) || (p.pinv = plan_irfft!(f,p.region))
return p.pinv * f
end


##########################################################################################
# Inverse plans

function plan_brfft!(X::PaddedRFFTArray{T,N}, region;
flags::Integer=ESTIMATE,
timelimit::Real=NO_TIMELIMIT) where {T<:fftwReal,N}
(1 in region) || throw(ArgumentError("The first dimension must always be transformed"))
return rFFTWPlan{Complex{T},BACKWARD,true,N}(complex_view(X), real(X), region, flags,timelimit)
end

plan_brfft!(f::PaddedRFFTArray;kws...) = plan_brfft!(f,1:ndims(f);kws...)

*(p::rFFTWPlan{Complex{T},BACKWARD,true,N},f::PaddedRFFTArray{T,N}) where {T<:fftwReal,N} =
(mul!(real(f), p, complex_view(f)); real(f))

brfft!(f::PaddedRFFTArray, region=1:ndims(f)) = plan_brfft!(f, region) * f

function plan_irfft!(x::PaddedRFFTArray{T,N}, region; kws...) where {T,N}
ScaledPlan(plan_brfft!(x, region; kws...),normalization(T, size(real(x)), region))
end

plan_irfft!(f::PaddedRFFTArray;kws...) = plan_irfft!(f,1:ndims(f);kws...)

*(p::ScaledPlan,f::PaddedRFFTArray) = begin
p.p * f
rmul!(data(f), p.scale)
real(f)
end

irfft!(f::PaddedRFFTArray, region=1:ndims(f)) = plan_irfft!(f,region) * f
2 changes: 2 additions & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -512,3 +512,5 @@ let A = rand(Float32, 35), Ac = rand(Complex{Float32}, 35)
@test_throws ArgumentError plan_rfft(Array{Float32}(undef, 32)) * view(A, 2:33)
@test_throws ArgumentError plan_fft(Array{Complex{Float32}}(undef, 32)) * view(Ac, 2:33)
end

include("test_rfft!.jl")
66 changes: 66 additions & 0 deletions test/test_rfft!.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,66 @@
let a = rand(Float64,(8,4,4)), b = PaddedRFFTArray(a), c = copy(b)

@testset "PaddedRFFTArray creation" begin
@test a == real(b)
@test c == b
@test c.r == b.r
@test typeof(similar(b)) === typeof(b)
@test size(similar(b,Float32)) === size(b)
@test size(similar(b,Float32).r) === size(b.r)
@test size(similar(b,(4,4,4)).r) === (4,4,4)
@test size(similar(b,Float32,(4,4,4)).r) === (4,4,4)
end

@testset "rfft! and irfft!" begin
@test rfft(a) ≈ rfft!(b)
@test a ≈ irfft!(b)
@test rfft(a,1:2) ≈ rfft!(b,1:2)
@test a ≈ irfft!(b,1:2)
@test rfft(a,(1,3)) ≈ rfft!(b,(1,3))
@test a ≈ irfft!(b,(1,3))

p = plan_rfft!(c)
@test p*c ≈ rfft!(b)
@test p\c ≈ irfft!(b)

a = rand(Float64,(9,4,4))
b = PaddedRFFTArray(a)
@test a == real(b)
@test rfft(a) ≈ rfft!(b)
@test a ≈ irfft!(b)
@test rfft(a,1:2) ≈ rfft!(b,1:2)
@test a ≈ irfft!(b,1:2)
@test rfft(a,(1,3)) ≈ rfft!(b,(1,3))
@test a ≈ irfft!(b,(1,3))
end

@testset "Read binary file to PaddedRFFTArray" begin
for s in ((8,4,4),(9,4,4),(8,),(9,))
aa = rand(Float64,s)
f = IOBuffer()
write(f,aa)
@test aa == real(PaddedRFFTArray(seekstart(f),s))
aa = rand(Float32,s)
f = IOBuffer()
write(f,aa)
@test aa == real(PaddedRFFTArray{Float32}(seekstart(f),s))
end
end

@testset "brfft!" begin
a = rand(Float64,(4,4))
b = PaddedRFFTArray(a)
rfft!(b)
@test (brfft!(b) ./ 16) ≈ a
end

@testset "FFTW MEASURE flag" begin
c = similar(b)
p = plan_rfft!(c,flags=FFTW.MEASURE)
p.pinv = plan_irfft!(c,flags=FFTW.MEASURE)
c .= b
@test c == b
@test p*c ≈ rfft!(b)
@test p\c ≈ irfft!(b)
end
end #let block