Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Block-Krylov processes #800

Merged
merged 1 commit into from
Oct 20, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
# Krylov.jl: A Julia basket of hand-picked Krylov methods

| **Documentation** | **CI** | **Coverage** | **DOI** | **Downloads** |
|:-----------------:|:-------------------------------:|:------------:|:-------:|:-------------:|
|:-----------------:|:------:|:------------:|:-------:|:-------------:|
| [![docs-stable][docs-stable-img]][docs-stable-url] [![docs-dev][docs-dev-img]][docs-dev-url] | [![build-gh][build-gh-img]][build-gh-url] [![build-cirrus][build-cirrus-img]][build-cirrus-url] | [![codecov][codecov-img]][codecov-url] | [![doi][doi-img]][doi-url] | [![downloads][downloads-img]][downloads-url] |

[docs-stable-img]: https://img.shields.io/badge/docs-stable-blue.svg
Expand Down
1 change: 1 addition & 0 deletions docs/make.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,7 @@ makedocs(
pages = ["Home" => "index.md",
"API" => "api.md",
"Krylov processes" => "processes.md",
"Block Krylov processes" => "block_processes.md",
"Krylov methods" => ["Hermitian positive definite linear systems" => "solvers/spd.md",
"Hermitian indefinite linear systems" => "solvers/sid.md",
"Non-Hermitian square linear systems" => "solvers/unsymmetric.md",
Expand Down
227 changes: 227 additions & 0 deletions docs/src/block_processes.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,227 @@
# [Block Krylov processes](@id block-krylov-processes)

## [Block Hermitian Lanczos](@id block-hermitian-lanczos)

If the vector $b$ in the [Hermitian Lanczos](@ref hermitian-lanczos) process is replaced by a matrix $B$ with $p$ columns, we can derive the block Hermitian Lanczos process.

![block_hermitian_lanczos](./graphics/block_hermitian_lanczos.png)

After $k$ iterations of the block Hermitian Lanczos process, the situation may be summarized as
```math
\begin{align*}
A V_k &= V_{k+1} T_{k+1,k}, \\
V_k^H V_k &= I_{pk},
\end{align*}
```
where $V_k$ is an orthonormal basis of the block Krylov subspace $\mathcal{K}_k^{\square}(A,B)$,
```math
T_{k+1,k} =
\begin{bmatrix}
\Omega_1 & \Psi_2^H & & \\
\Psi_2 & \Omega_2 & \ddots & \\
& \ddots & \ddots & \Psi_k^H \\
& & \Psi_k & \Omega_k \\
& & & \Psi_{k+1}
\end{bmatrix}.
```

The function [`hermitian_lanczos`](@ref hermitian_lanczos(::Any, ::AbstractMatrix{FC}, ::Int) where FC <: (Union{Complex{T}, T} where T <: AbstractFloat)) returns $V_{k+1}$, $\Psi_1$ and $T_{k+1,k}$.

```@docs
hermitian_lanczos(::Any, ::AbstractMatrix{FC}, ::Int) where FC <: (Union{Complex{T}, T} where T <: AbstractFloat)
```

## [Block Non-Hermitian Lanczos](@id block-nonhermitian-lanczos)

If the vectors $b$ and $c$ in the [non-Hermitian Lanczos](@ref nonhermitian-lanczos) process are replaced by matrices $B$ and $C$ with both $p$ columns, we can derive the block non-Hermitian Lanczos process.

![block_nonhermitian_lanczos](./graphics/block_nonhermitian_lanczos.png)

After $k$ iterations of the block non-Hermitian Lanczos process, the situation may be summarized as
```math
\begin{align*}
A V_k &= V_{k+1} T_{k+1,k}, \\
A^H U_k &= U_{k+1} T_{k,k+1}^H, \\
V_k^H U_k &= U_k^H V_k = I_{pk},
\end{align*}
```
where $V_k$ and $U_k$ are bases of the block Krylov subspaces $\mathcal{K}^{\square}_k(A,B)$ and $\mathcal{K}^{\square}_k (A^H,C)$, respectively,
```math
T_{k+1,k} =
\begin{bmatrix}
\Omega_1 & \Phi_2 & & \\
\Psi_2 & \Omega_2 & \ddots & \\
& \ddots & \ddots & \Phi_k \\
& & \Psi_k & \Omega_k \\
& & & \Psi_{k+1}
\end{bmatrix}
, \qquad
T_{k,k+1}^H =
\begin{bmatrix}
\Omega_1^H & \Psi_2^H & & \\
\Phi_2^H & \Omega_2^H & \ddots & \\
& \ddots & \ddots & \Psi_k^H \\
& & \Phi_k^H & \Omega_k^H \\
& & & \Phi_{k+1}^H
\end{bmatrix}.
```

The function [`nonhermitian_lanczos`](@ref nonhermitian_lanczos(::Any, ::AbstractMatrix{FC}, ::AbstractMatrix{FC}, ::Int) where FC <: (Union{Complex{T}, T} where T <: AbstractFloat)) returns $V_{k+1}$, $\Psi_1$, $T_{k+1,k}$, $U_{k+1}$ $\Phi_1^H$ and $T_{k,k+1}^H$.

```@docs
nonhermitian_lanczos(::Any, ::AbstractMatrix{FC}, ::AbstractMatrix{FC}, ::Int) where FC <: (Union{Complex{T}, T} where T <: AbstractFloat)
```

## [Block Arnoldi](@id block-arnoldi)

If the vector $b$ in the [Arnoldi](@ref arnoldi) process is replaced by a matrix $B$ with $p$ columns, we can derive the block Arnoldi process.

![block_arnoldi](./graphics/block_arnoldi.png)

After $k$ iterations of the block Arnoldi process, the situation may be summarized as
```math
\begin{align*}
A V_k &= V_{k+1} H_{k+1,k}, \\
V_k^H V_k &= I_{pk},
\end{align*}
```
where $V_k$ is an orthonormal basis of the block Krylov subspace $\mathcal{K}_k^{\square}(A,B)$,
```math
H_{k+1,k} =
\begin{bmatrix}
\Psi_{1,1}~ & \Psi_{1,2}~ & \ldots & \Psi_{1,k} \\
\Psi_{2,1}~ & \ddots~ & \ddots & \vdots \\
& \ddots~ & \ddots & \Psi_{k-1,k} \\
& & \Psi_{k,k-1} & \Psi_{k,k} \\
& & & \Psi_{k+1,k}
\end{bmatrix}.
```

The function [`arnoldi`](@ref arnoldi(::Any, ::AbstractMatrix{FC}, ::Int) where FC <: (Union{Complex{T}, T} where T <: AbstractFloat)) returns $V_{k+1}$, $\Gamma$, and $H_{k+1,k}$.

```@docs
arnoldi(::Any, ::AbstractMatrix{FC}, ::Int) where FC <: (Union{Complex{T}, T} where T <: AbstractFloat)
```

## [Block Golub-Kahan](@id block-golub-kahan)

If the vector $b$ in the [Golub-Kahan](@ref golub-kahan) process is replaced by a matrix $B$ with $p$ columns, we can derive the block Golub-Kahan process.

![block_golub_kahan](./graphics/block_golub_kahan.png)

After $k$ iterations of the block Golub-Kahan process, the situation may be summarized as
```math
\begin{align*}
A V_k &= U_{k+1} B_k, \\
A^H U_{k+1} &= V_{k+1} L_{k+1}^H, \\
V_k^H V_k &= U_k^H U_k = I_{pk},
\end{align*}
```
where $V_k$ and $U_k$ are bases of the block Krylov subspaces $\mathcal{K}_k^{\square}(A^HA,A^HB)$ and $\mathcal{K}_k^{\square}(AA^H,B)$, respectively,
```math
B_k =
\begin{bmatrix}
\Omega_1 & & & \\
\Psi_2 & \Omega_2 & & \\
& \ddots & \ddots & \\
& & \Psi_k & \Omega_k \\
& & & \Psi_{k+1} \\
\end{bmatrix}
, \qquad
L_{k+1}^H =
\begin{bmatrix}
\Omega_1^H & \Psi_2^H & & & \\
& \Omega_2^H & \ddots & & \\
& & \ddots & \Psi_k^H & \\
& & & \Omega_k^H & \Psi_{k+1}^H \\
& & & & \Omega_{k+1}^H \\
\end{bmatrix}.
```

The function [`golub_kahan`](@ref golub_kahan(::Any, ::AbstractMatrix{FC}, ::Int) where FC <: (Union{Complex{T}, T} where T <: AbstractFloat)) returns $V_{k+1}$, $U_{k+1}$, $\Psi_1$ and $L_{k+1}$.

```@docs
golub_kahan(::Any, ::AbstractMatrix{FC}, ::Int) where FC <: (Union{Complex{T}, T} where T <: AbstractFloat)
```

## [Block Saunders-Simon-Yip](@id block-saunders-simon-yip)

If the vectors $b$ and $c$ in the [Saunders-Simon-Yip](@ref saunders-simon-yip) process are replaced by matrices $B$ and $C$ with both $p$ columns, we can derive the block Saunders-Simon-Yip process.

![block_saunders_simon_yip](./graphics/block_saunders_simon_yip.png)

After $k$ iterations of the block Saunders-Simon-Yip process, the situation may be summarized as
```math
\begin{align*}
A U_k &= V_{k+1} T_{k+1,k}, \\
A^H V_k &= U_{k+1} T_{k,k+1}^H, \\
V_k^H V_k &= U_k^H U_k = I_{pk},
\end{align*}
```
where $\begin{bmatrix} V_k & 0 \\ 0 & U_k \end{bmatrix}$ is an orthonormal basis of the block Krylov subspace $\mathcal{K}^{\square}_k \left(\begin{bmatrix} 0 & A \\ A^H & 0 \end{bmatrix}, \begin{bmatrix} B & 0 \\ 0 & C \end{bmatrix}\right)$,
```math
T_{k+1,k} =
\begin{bmatrix}
\Omega_1 & \Phi_2 & & \\
\Psi_2 & \Omega_2 & \ddots & \\
& \ddots & \ddots & \Phi_k \\
& & \Psi_k & \Omega_k \\
& & & \Psi_{k+1}
\end{bmatrix}
, \qquad
T_{k,k+1}^H =
\begin{bmatrix}
\Omega_1^H & \Psi_2^H & & \\
\Phi_2^H & \Omega_2^H & \ddots & \\
& \ddots & \ddots & \Psi_k^H \\
& & \Phi_k^H & \Omega_k^H \\
& & & \Phi_{k+1}^H
\end{bmatrix}.
```

The function [`saunders_simon_yip`](@ref saunders_simon_yip(::Any, ::AbstractMatrix{FC}, ::AbstractMatrix{FC}, ::Int) where FC <: (Union{Complex{T}, T} where T <: AbstractFloat)) returns $V_{k+1}$, $\Psi_1$, $T_{k+1,k}$, $U_{k+1}$, $\Phi_1^H$ and $T_{k,k+1}^H$.

```@docs
saunders_simon_yip(::Any, ::AbstractMatrix{FC}, ::AbstractMatrix{FC}, ::Int) where FC <: (Union{Complex{T}, T} where T <: AbstractFloat)
```

## [Block Montoison-Orban](@id block-montoison-orban)

If the vectors $b$ and $c$ in the [Montoison-Orban](@ref montoison-orban) process are replaced by matrices $D$ and $C$ with both $p$ columns, we can derive the block Montoison-Orban process.

![block_montoison_orban](./graphics/block_montoison_orban.png)

After $k$ iterations of the block Montoison-Orban process, the situation may be summarized as
```math
\begin{align*}
A U_k &= V_{k+1} H_{k+1,k}, \\
B V_k &= U_{k+1} F_{k+1,k}, \\
V_k^H V_k &= U_k^H U_k = I_{pk},
\end{align*}
```
where $\begin{bmatrix} V_k & 0 \\ 0 & U_k \end{bmatrix}$ is an orthonormal basis of the block Krylov subspace $\mathcal{K}^{\square}_k \left(\begin{bmatrix} 0 & A \\ B & 0 \end{bmatrix}, \begin{bmatrix} D & 0 \\ 0 & C \end{bmatrix}\right)$,
```math
H_{k+1,k} =
\begin{bmatrix}
\Psi_{1,1}~ & \Psi_{1,2}~ & \ldots & \Psi_{1,k} \\
\Psi_{2,1}~ & \ddots~ & \ddots & \vdots \\
& \ddots~ & \ddots & \Psi_{k-1,k} \\
& & \Psi_{k,k-1} & \Psi_{k,k} \\
& & & \Psi_{k+1,k}
\end{bmatrix}
, \qquad
F_{k+1,k} =
\begin{bmatrix}
\Phi_{1,1}~ & \Phi_{1,2}~ & \ldots & \Phi_{1,k} \\
\Phi_{2,1}~ & \ddots~ & \ddots & \vdots \\
& \ddots~ & \ddots & \Phi_{k-1,k} \\
& & \Phi_{k,k-1} & \Phi_{k,k} \\
& & & \Phi_{k+1,k}
\end{bmatrix}.
```

The function [`montoison_orban`](@ref montoison_orban(::Any, ::Any, ::AbstractMatrix{FC}, ::AbstractMatrix{FC}, ::Int) where FC <: (Union{Complex{T}, T} where T <: AbstractFloat)) returns $V_{k+1}$, $\Gamma$, $H_{k+1,k}$, $U_{k+1}$, $\Lambda$, and $F_{k+1,k}$.

```@docs
montoison_orban(::Any, ::Any, ::AbstractMatrix{FC}, ::AbstractMatrix{FC}, ::Int) where FC <: (Union{Complex{T}, T} where T <: AbstractFloat)
```
Binary file added docs/src/graphics/block_arnoldi.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/src/graphics/block_golub_kahan.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/src/graphics/block_hermitian_lanczos.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/src/graphics/block_montoison_orban.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/src/graphics/block_nonhermitian_lanczos.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added docs/src/graphics/block_saunders_simon_yip.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
3 changes: 3 additions & 0 deletions src/Krylov.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,10 @@ using LinearAlgebra, SparseArrays, Printf
include("krylov_utils.jl")
include("krylov_stats.jl")
include("krylov_solvers.jl")

include("processes_utils.jl")
include("krylov_processes.jl")
include("block_krylov_processes.jl")

include("cg.jl")
include("cr.jl")
Expand Down
Loading