Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Simplifying acos(0/1), asin(0,1) and anything + 0 #1264

Merged
merged 14 commits into from
Sep 14, 2024
4 changes: 0 additions & 4 deletions ext/SymbolicsGroebnerExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -320,13 +320,9 @@ end
# Helps with precompilation time
PrecompileTools.@setup_workload begin
@variables a b c x y z
equation1 = a*log(x)^b + c ~ 0
equation_actually_polynomial = sin(x^2 +1)^2 + sin(x^2 + 1) + 3
simple_linear_equations = [x - y, y + 2z]
equations_intersect_sphere_line = [x^2 + y^2 + z^2 - 9, x - 2y + 3, y - z]
PrecompileTools.@compile_workload begin
symbolic_solve(equation1, x)
symbolic_solve(equation_actually_polynomial)
symbolic_solve(simple_linear_equations, [x, y], warns=false)
symbolic_solve(equations_intersect_sphere_line, [x, y, z], warns=false)
end
Expand Down
6 changes: 6 additions & 0 deletions ext/SymbolicsNemoExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,13 @@ end
PrecompileTools.@setup_workload begin
@variables a b c x y z
expr_with_params = expand((x + b)*(x^2 + 2x + 1)*(x^2 - a))
equation1 = a*log(x)^b + c ~ 0
equation_polynomial = 9^x + 3^x + 2
exp_eq = 5*2^(x+1) + 7^(x+3)
PrecompileTools.@compile_workload begin
symbolic_solve(equation1, x)
symbolic_solve(equation_polynomial, x)
symbolic_solve(exp_eq)
symbolic_solve(expr_with_params, x, dropmultiplicity=false)
symbolic_solve(x^10 - a^10, x, dropmultiplicity=false)
end
Expand Down
6 changes: 2 additions & 4 deletions src/solver/attract.jl
Original file line number Diff line number Diff line change
Expand Up @@ -197,10 +197,8 @@ function attract_trig(lhs, var)
r_trig = [@acrule(sin(~x::(contains_var))^2 + cos(~x::(contains_var))^2=>one(~x))
@acrule(sin(~x::(contains_var))^2 + -1=>-1 * cos(~x)^2)
@acrule(cos(~x::(contains_var))^2 + -1=>-1 * sin(~x)^2)
@acrule(cos(~x::(contains_var))^2 + -1 * sin(~x::(contains_var))^2=>cos(2 *
~x))
@acrule(sin(~x::(contains_var))^2 + -1 * cos(~x::(contains_var))^2=>-cos(2 *
~x))
@acrule(cos(~x::(contains_var))^2 + -1 * sin(~x::(contains_var))^2=>cos(2*~x))
@acrule(sin(~x::(contains_var))^2 + -1 * cos(~x::(contains_var))^2=>-cos(2*~x))
@acrule(cos(~x::(contains_var)) * sin(~x::(contains_var))=>sin(2 * ~x) / 2)
@acrule(tan(~x::(contains_var))^2 + -1 * sec(~x::(contains_var))^2=>one(~x))
@acrule(-1 * tan(~x::(contains_var))^2 + sec(~x::(contains_var))^2=>one(~x))
Expand Down
2 changes: 1 addition & 1 deletion src/solver/ia_main.jl
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,7 @@ function isolate(lhs, var; warns=true, conditions=[])
new_var = (@variables $new_var)[1]
rhs = map(
sol -> term(rev_oper[oper], sol) +
term(*, Base.MathConstants.pi, 2 * new_var),
term(*, Base.MathConstants.pi, new_var),
rhs)
@info string(new_var) * " ϵ" * " Ζ"

Expand Down
79 changes: 71 additions & 8 deletions src/solver/postprocess.jl
Original file line number Diff line number Diff line change
@@ -1,4 +1,3 @@

# Alex: make sure `Num`s are not processed here as they'd break it.
_postprocess_root(x) = x

Expand Down Expand Up @@ -32,30 +31,30 @@ function _postprocess_root(x::SymbolicUtils.BasicSymbolic)
!iscall(x) && return x

x = Symbolics.term(operation(x), map(_postprocess_root, arguments(x))...)
oper = operation(x)

# sqrt(0), cbrt(0) => 0
# sqrt(1), cbrt(1) => 1
if iscall(x) &&
(operation(x) === sqrt || operation(x) === cbrt || operation(x) === ssqrt ||
operation(x) === scbrt)
if (oper === sqrt || oper === cbrt || oper === ssqrt ||
oper === scbrt)
arg = arguments(x)[1]
if isequal(arg, 0) || isequal(arg, 1)
return arg
end
end

# (X)^0 => 1
if iscall(x) && operation(x) === (^) && isequal(arguments(x)[2], 0)
if oper === (^) && isequal(arguments(x)[2], 0)
return 1
end

# (X)^1 => X
if iscall(x) && operation(x) === (^) && isequal(arguments(x)[2], 1)
if oper === (^) && isequal(arguments(x)[2], 1)
return arguments(x)[1]
end

# sqrt((N / D)^2 * M) => N / D * sqrt(M)
if iscall(x) && (operation(x) === sqrt || operation(x) === ssqrt)
if (oper === sqrt || oper === ssqrt)
function squarefree_decomp(x::Integer)
square, squarefree = big(1), big(1)
for (p, d) in collect(Primes.factor(abs(x)))
Expand Down Expand Up @@ -90,7 +89,7 @@ function _postprocess_root(x::SymbolicUtils.BasicSymbolic)
end

# (sqrt(N))^M => N^div(M, 2)*sqrt(N)^(mod(M, 2))
if iscall(x) && operation(x) === (^)
if oper === (^)
arg1, arg2 = arguments(x)
if iscall(arg1) && (operation(arg1) === sqrt || operation(arg1) === ssqrt)
if arg2 isa Integer
Expand All @@ -105,6 +104,19 @@ function _postprocess_root(x::SymbolicUtils.BasicSymbolic)
end
end

x = convert_consts(x)

if oper === (+)
args = arguments(x)
for arg in args
if isequal(arg, 0)
after_removing = setdiff(args, arg)
isone(length(after_removing)) && return after_removing[1]
return Symbolics.term(+, after_removing)
end
end
end

return x
end

Expand All @@ -122,3 +134,54 @@ function postprocess_root(x)
end
x # unreachable
end


inv_exacts = [0, Symbolics.term(*, pi),
Symbolics.term(/,pi,3),
Symbolics.term(/, pi, 2),
Symbolics.term(/, Symbolics.term(*, 2, pi), 3),
Symbolics.term(/, pi, 6),
Symbolics.term(/, Symbolics.term(*, 5, pi), 6),
Symbolics.term(/, pi, 4)
]
inv_evald = Symbolics.symbolic_to_float.(inv_exacts)

const inv_pairs = collect(zip(inv_exacts, inv_evald))
"""
function convert_consts(x)
This function takes BasicSymbolic terms as input (x) and attempts
to simplify these basic symbolic terms using known values.
Currently, this function only supports inverse trigonometric functions.

## Examples
```jldoctest
julia> Symbolics.convert_consts(Symbolics.term(acos, 0))
π / 2

julia> Symbolics.convert_consts(Symbolics.term(atan, 0))
0

julia> Symbolics.convert_consts(Symbolics.term(atan, 1))
π / 4
```
"""
function convert_consts(x)
!iscall(x) && return x

oper = operation(x)
inv_opers = [asin, acos, atan]

if any(isequal(oper, o) for o in inv_opers) && isempty(Symbolics.get_variables(x))
val = Symbolics.symbolic_to_float(x)
for (exact, evald) in inv_pairs
if isapprox(evald, val)
return exact
elseif isapprox(-evald, val)
return -exact
end
end
end

# add [sin, cos, tan] simplifications in the future?
return x
end
2 changes: 1 addition & 1 deletion src/solver/solve_helpers.jl
Original file line number Diff line number Diff line change
Expand Up @@ -78,7 +78,7 @@ function check_expr_validity(expr)
valid_type = false

if type_expr <: Number || type_expr == Num || type_expr == SymbolicUtils.BasicSymbolic{Real} ||
type_expr == Complex{Num} || type_expr == ComplexTerm{Real}
type_expr == Complex{Num} || type_expr == ComplexTerm{Real} || type_expr == SymbolicUtils.BasicSymbolic{Complex{Real}}
valid_type = true
end
iscall(unwrap(expr)) && @assert !hasderiv(unwrap(expr)) "Differential equations are not currently supported"
Expand Down
Loading