Skip to content

Commit

Permalink
almost done here
Browse files Browse the repository at this point in the history
  • Loading branch information
pat-alt committed Jun 4, 2024
1 parent 724d656 commit 3d1bb3e
Show file tree
Hide file tree
Showing 25 changed files with 20,555 additions and 20,900 deletions.
Empty file added CHANGELOG.md
Empty file.
14 changes: 11 additions & 3 deletions Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -14,27 +14,35 @@ MLJModelInterface = "e80e1ace-859a-464e-9ed9-23947d8ae3ea"
MLUtils = "f1d291b0-491e-4a28-83b9-f70985020b54"
ProgressMeter = "92933f4c-e287-5a05-a399-4b506db050ca"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
Tables = "bd369af6-aec1-5ad0-b16a-f7cc5008161c"
TaijaBase = "10284c91-9f28-4c9a-abbf-ee43576dfff6"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[compat]
Aqua = "0.8"
CategoricalArrays = "0.10"
ChainRulesCore = "1.16"
ComputationalResources = "0.3"
Distributions = "0.25"
Flux = "0.13, 0.14"
MLJFlux = "0.2, 0.3"
MLJFlux = "0.2, 0.3, 0.4.0"
MLJModelInterface = "1.8"
MLUtils = "0.4"
ProgressMeter = "1.7"
Reexport = "1.2.2"
StatsBase = "0.33, 0.34"
Tables = "1.10"
TaijaBase = "1.1.0"
Zygote = "0.6"
julia = "1.7"
Random = "1.7, 1.10"
Test = "1.7, 1.10"
julia = "1.7, 1.10"

[extras]
Aqua = "4c88cf16-eb10-579e-8560-4a9242c79595"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"

[targets]
test = ["Test"]
test = ["Aqua", "Test"]
2 changes: 1 addition & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -3,7 +3,7 @@

*Joint Energy Models in Julia.*

[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliatrustworthyai.github.io/JointEnergyModels.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://juliatrustworthyai.github.io/JointEnergyModels.jl/dev) [![Build Status](https://github.com/juliatrustworthyai/JointEnergyModels.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/juliatrustworthyai/JointEnergyModels.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/juliatrustworthyai/JointEnergyModels.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/juliatrustworthyai/JointEnergyModels.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![License](https://img.shields.io/github/license/juliatrustworthyai/JointEnergyModels.jl)](LICENSE) [![Package Downloads](https://shields.io/endpoint?url=https://pkgs.genieframework.com/api/v1/badge/JointEnergyModels/.png)](https://pkgs.genieframework.com?packages=JointEnergyModels)
[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliatrustworthyai.github.io/JointEnergyModels.jl/stable) [![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://juliatrustworthyai.github.io/JointEnergyModels.jl/dev) [![Build Status](https://github.com/juliatrustworthyai/JointEnergyModels.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/juliatrustworthyai/JointEnergyModels.jl/actions/workflows/CI.yml?query=branch%3Amain) [![Coverage](https://codecov.io/gh/juliatrustworthyai/JointEnergyModels.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/juliatrustworthyai/JointEnergyModels.jl) [![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle) [![License](https://img.shields.io/github/license/juliatrustworthyai/JointEnergyModels.jl)](LICENSE) [![Package Downloads](https://img.shields.io/badge/dynamic/json?url=http%3A%2F%2Fjuliapkgstats.com%2Fapi%2Fv1%2Fmonthly_downloads%2FJointEnergyModels&query=total_requests&suffix=%2Fmonth&label=Downloads)](http://juliapkgstats.com/pkg/JointEnergyModels) [![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl)

`JointEnergyModels.jl` is a package for training Joint Energy Models in Julia. Joint Energy Models (JEM) are hybrid models that learn to discriminate between classes $y$ and generate input data $x$. They were introduced in Grathwohl et al. (2020), which provides the foundation for the methodologies implemented in this package.

Expand Down
4,054 changes: 2,027 additions & 2,027 deletions README_files/figure-commonmark/cell-3-output-1.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
9,183 changes: 4,575 additions & 4,608 deletions README_files/figure-commonmark/cell-8-output-1.svg
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
2 changes: 1 addition & 1 deletion _freeze/docs/src/index/execute-results/md.json
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@
"hash": "8d26f827b22cadaf45d98344b37a0051",
"result": {
"engine": "jupyter",
"markdown": "```@meta\nCurrentModule = JointEnergyModels\n```\n\n# `JointEnergyModels.jl`\n\nDocumentation for [JointEnergyModels.jl](https://github.com/juliatrustworthyai/JointEnergyModels.jl).\n\n---\nexecute: \n eval: false\n---\n\n*Joint Energy Models in Julia.*\n\n[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliatrustworthyai.github.io/JointEnergyModels.jl/stable)\n[![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://juliatrustworthyai.github.io/JointEnergyModels.jl/dev)\n[![Build Status](https://github.com/juliatrustworthyai/JointEnergyModels.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/juliatrustworthyai/JointEnergyModels.jl/actions/workflows/CI.yml?query=branch%3Amain)\n[![Coverage](https://codecov.io/gh/juliatrustworthyai/JointEnergyModels.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/juliatrustworthyai/JointEnergyModels.jl)\n[![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle)\n[![License](https://img.shields.io/github/license/juliatrustworthyai/JointEnergyModels.jl)](LICENSE)\n[![Package Downloads](https://shields.io/endpoint?url=https://pkgs.genieframework.com/api/v1/badge/JointEnergyModels/)](https://pkgs.genieframework.com?packages=JointEnergyModels)\n\n\n\n`JointEnergyModels.jl` is a package for training Joint Energy Models in Julia. Joint Energy Models (JEM) are hybrid models that learn to discriminate between classes $y$ and generate input data $x$. They were introduced in @grathwohl2020your, which provides the foundation for the methodologies implemented in this package.\n\n## 🔁 Status\n\nThis package is still in its infancy and the API is subject to change. Currently, the package can be used to train JEMs for classification. It is also possible to train pure Energy-Based Models (EBMs) for the generative task only. The package is compatible with `Flux.jl`. Work on compatibility with `MLJ.jl` (through `MLJFlux.jl`) is currently under way.\n\nWe welcome contributions and feedback at this early stage. To install the development version of the package you can run the following command:\n\n```{.julia}\nusing Pkg\nPkg.add(url=\"https://github.com/juliatrustworthyai/JointEnergyModels.jl\")\n```\n\n## 🔍 Usage Example\n\nBelow we first generate some synthetic data:\n\n::: {.cell execution_count=2}\n``` {.julia .cell-code}\nnobs=2000\nX, y = make_circles(nobs, noise=0.1, factor=0.5)\nXplot = Float32.(permutedims(matrix(X)))\nX = table(permutedims(Xplot))\nplt = scatter(Xplot[1,:], Xplot[2,:], group=y, label=\"\")\nbatch_size = Int(round(nobs/10))\ndisplay(plt)\n```\n\n::: {.cell-output .cell-output-display}\n![](index_files/figure-commonmark/cell-3-output-1.svg){}\n:::\n:::\n\n\nThe `MLJ` compatible classifier can be instantiated as follows:\n\n::: {.cell execution_count=3}\n``` {.julia .cell-code}\n𝒟x = Normal()\n𝒟y = Categorical(ones(2) ./ 2)\nsampler = ConditionalSampler(𝒟x, 𝒟y, input_size=size(Xplot)[1:end-1], batch_size=batch_size)\nclf = JointEnergyClassifier(\n sampler;\n builder=MLJFlux.MLP(hidden=(32, 32, 32,), σ=Flux.relu),\n batch_size=batch_size,\n finaliser=x -> x,\n loss=Flux.Losses.logitcrossentropy,\n)\n```\n:::\n\n\nIt uses the `MLJFlux` package to build the model:\n\n::: {.cell execution_count=4}\n``` {.julia .cell-code}\nprintln(typeof(clf) <: MLJFlux.MLJFluxModel)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\ntrue\n```\n:::\n:::\n\n\nThe model can be wrapped in data and trained using the `fit!` function:\n\n::: {.cell execution_count=5}\n``` {.julia .cell-code}\nmach = machine(clf, X, y)\nfit!(mach)\n```\n:::\n\n\nThe results are visualised below. The model has learned to discriminate between the two classes (as indicated by the contours) and to generate samples from each class (as indicated by the stars).\n\n\n\n::: {.cell execution_count=7}\n\n::: {.cell-output .cell-output-display}\n![](index_files/figure-commonmark/cell-8-output-1.svg){}\n:::\n:::\n\n\n## 🎓 References\n\n",
"markdown": "```@meta\nCurrentModule = JointEnergyModels\n```\n\n# `JointEnergyModels.jl`\n\nDocumentation for [JointEnergyModels.jl](https://github.com/juliatrustworthyai/JointEnergyModels.jl).\n\n---\nexecute: \n eval: false\n---\n\n*Joint Energy Models in Julia.*\n\n[![Stable](https://img.shields.io/badge/docs-stable-blue.svg)](https://juliatrustworthyai.github.io/JointEnergyModels.jl/stable)\n[![Dev](https://img.shields.io/badge/docs-dev-blue.svg)](https://juliatrustworthyai.github.io/JointEnergyModels.jl/dev)\n[![Build Status](https://github.com/juliatrustworthyai/JointEnergyModels.jl/actions/workflows/CI.yml/badge.svg?branch=main)](https://github.com/juliatrustworthyai/JointEnergyModels.jl/actions/workflows/CI.yml?query=branch%3Amain)\n[![Coverage](https://codecov.io/gh/juliatrustworthyai/JointEnergyModels.jl/branch/main/graph/badge.svg)](https://codecov.io/gh/juliatrustworthyai/JointEnergyModels.jl)\n[![Code Style: Blue](https://img.shields.io/badge/code%20style-blue-4495d1.svg)](https://github.com/invenia/BlueStyle)\n[![License](https://img.shields.io/github/license/juliatrustworthyai/JointEnergyModels.jl)](LICENSE)\n[![Package Downloads](https://img.shields.io/badge/dynamic/json?url=http%3A%2F%2Fjuliapkgstats.com%2Fapi%2Fv1%2Fmonthly_downloads%2FJointEnergyModels&query=total_requests&suffix=%2Fmonth&label=Downloads)](http://juliapkgstats.com/pkg/JointEnergyModels) \n[![Aqua QA](https://raw.githubusercontent.com/JuliaTesting/Aqua.jl/master/badge.svg)](https://github.com/JuliaTesting/Aqua.jl)\n\n\n\n`JointEnergyModels.jl` is a package for training Joint Energy Models in Julia. Joint Energy Models (JEM) are hybrid models that learn to discriminate between classes $y$ and generate input data $x$. They were introduced in @grathwohl2020your, which provides the foundation for the methodologies implemented in this package.\n\n## 🔁 Status\n\nThis package is still in its infancy and the API is subject to change. Currently, the package can be used to train JEMs for classification. It is also possible to train pure Energy-Based Models (EBMs) for the generative task only. The package is compatible with `Flux.jl`. Work on compatibility with `MLJ.jl` (through `MLJFlux.jl`) is currently under way.\n\nWe welcome contributions and feedback at this early stage. To install the development version of the package you can run the following command:\n\n```{.julia}\nusing Pkg\nPkg.add(url=\"https://github.com/juliatrustworthyai/JointEnergyModels.jl\")\n```\n\n## 🔍 Usage Example\n\nBelow we first generate some synthetic data:\n\n::: {.cell execution_count=2}\n``` {.julia .cell-code}\nnobs=2000\nX, y = make_circles(nobs, noise=0.1, factor=0.5)\nXplot = Float32.(permutedims(matrix(X)))\nX = table(permutedims(Xplot))\nplt = scatter(Xplot[1,:], Xplot[2,:], group=y, label=\"\")\nbatch_size = Int(round(nobs/10))\ndisplay(plt)\n```\n\n::: {.cell-output .cell-output-display}\n![](index_files/figure-commonmark/cell-3-output-1.svg){}\n:::\n:::\n\n\nThe `MLJ` compatible classifier can be instantiated as follows:\n\n::: {.cell execution_count=3}\n``` {.julia .cell-code}\n𝒟x = Normal()\n𝒟y = Categorical(ones(2) ./ 2)\nsampler = ConditionalSampler(𝒟x, 𝒟y, input_size=size(Xplot)[1:end-1], batch_size=batch_size)\nclf = JointEnergyClassifier(\n sampler;\n builder=MLJFlux.MLP(hidden=(32, 32, 32,), σ=Flux.relu),\n batch_size=batch_size,\n finaliser=x -> x,\n loss=Flux.Losses.logitcrossentropy,\n)\n```\n:::\n\n\nIt uses the `MLJFlux` package to build the model:\n\n::: {.cell execution_count=4}\n``` {.julia .cell-code}\nprintln(typeof(clf) <: MLJFlux.MLJFluxModel)\n```\n\n::: {.cell-output .cell-output-stdout}\n```\ntrue\n```\n:::\n:::\n\n\nThe model can be wrapped in data and trained using the `fit!` function:\n\n::: {.cell execution_count=5}\n``` {.julia .cell-code}\nmach = machine(clf, X, y)\nfit!(mach)\n```\n:::\n\n\nThe results are visualised below. The model has learned to discriminate between the two classes (as indicated by the contours) and to generate samples from each class (as indicated by the stars).\n\n\n\n::: {.cell execution_count=7}\n\n::: {.cell-output .cell-output-display}\n![](index_files/figure-commonmark/cell-8-output-1.svg){}\n:::\n:::\n\n\n## 🎓 References\n\n",
"supporting": [
"index_files"
],
Expand Down
Loading

0 comments on commit 3d1bb3e

Please sign in to comment.