-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Create quantum_reinforcement_learning.py
- Loading branch information
Showing
1 changed file
with
43 additions
and
0 deletions.
There are no files selected for viewing
43 changes: 43 additions & 0 deletions
43
evolution/machine_learning/quantum_reinforcement_learning.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,43 @@ | ||
# quantum_reinforcement_learning.py | ||
import numpy as np | ||
from qiskit import QuantumCircuit, execute | ||
from qiskit.providers.aer import AerSimulator | ||
from tensorflow.keras.models import Model | ||
from tensorflow.keras.layers import Input, Dense, LSTM | ||
|
||
class QuantumReinforcementLearning: | ||
def __init__(self, num_qubits, num_layers): | ||
self.num_qubits = num_qubits | ||
self.num_layers = num_layers | ||
self.quantum_backend = AerSimulator() | ||
self.quantum_circuit = QuantumCircuit(num_qubits) | ||
|
||
def _generate_quantum_circuit(self): | ||
for i in range(self.num_layers): | ||
self.quantum_circuit.ry(np.pi / 2, i) | ||
self.quantum_circuit.rz(np.pi / 2, i) | ||
return self.quantum_circuit | ||
|
||
def _train_quantum_model(self, X, y): | ||
quantum_circuit = self._generate_quantum_circuit() | ||
job = execute(quantum_circuit, self.quantum_backend, shots=1024) | ||
result = job.result() | ||
counts = result.get_counts(quantum_circuit) | ||
return counts | ||
|
||
def _train_classical_model(self, X, y): | ||
model = Model(inputs=Input(shape=(X.shape[1],)), outputs=Dense(y.shape[1], activation='softmax')(LSTM(64)(Input(shape=(X.shape[1],))))) | ||
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) | ||
model.fit(X, y, epochs=10, batch_size=32, validation_data=(X, y)) | ||
return model | ||
|
||
def train(self, X, y): | ||
quantum_counts = self._train_quantum_model(X, y) | ||
classical_model = self._train_classical_model(X, y) | ||
return quantum_counts, classical_model | ||
|
||
# Example usage: | ||
X = np.random.rand(100, 10) | ||
y = np.random.rand(100, 10) | ||
qrl = QuantumReinforcementLearning(num_qubits=10, num_layers=5) | ||
quantum_counts, classical_model = qrl.train(X, y) |