Skip to content

Commit

Permalink
Create quantum_inspired_reinforcement_learning.py
Browse files Browse the repository at this point in the history
  • Loading branch information
KOSASIH authored Oct 12, 2024
1 parent dbc69a5 commit c23ea96
Showing 1 changed file with 29 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,29 @@
# quantum_inspired_reinforcement_learning.py
import numpy as np
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense

class QuantumInspiredReinforcementLearning:
def __init__(self, num_actions, num_states):
self.num_actions = num_actions
self.num_states = num_states

def _evaluate_reward(self, state, action):
# Implement reward function
pass

def _train_model(self, X, y):
model = Model(inputs=Input(shape=(X.shape[1],)), outputs=Dense(y.shape[1], activation='softmax')(Dense(64, activation='relu')(Input(shape=(X.shape[1],)))))
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
model.fit(X, y, epochs=10, batch_size=32, validation_data=(X, y))
return model

def train(self, X, y):
model = self._train_model(X, y)
return model

# Example usage:
X = np.random.rand(100, 10)
y = np.random.rand(100, 10)
qirl = QuantumInspiredReinforcementLearning(num_actions=4, num_states=10)
model = qirl.train(X, y)

0 comments on commit c23ea96

Please sign in to comment.