Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add test for painted surface #203

Merged
merged 3 commits into from
Nov 29, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
34 changes: 34 additions & 0 deletions tests/test_data/cylinder/cylinder_aneudraw_surface.vtp
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
<?xml version="1.0"?>
<VTKFile type="PolyData" version="0.1" byte_order="LittleEndian" header_type="UInt32" compressor="vtkZLibDataCompressor">
<PolyData>
<Piece NumberOfPoints="389" NumberOfVerts="0" NumberOfLines="0" NumberOfStrips="0" NumberOfPolys="730" >
<PointData>
<DataArray type="Float64" Name="Thickness" format="appended" RangeMin="0.3" RangeMax="0.4" offset="0" />
</PointData>
<CellData>
</CellData>
<Points>
<DataArray type="Float32" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0.49967079508" RangeMax="0.90129687056" offset="228" />
</Points>
<Verts>
<DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="5916" />
<DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="5932" />
</Verts>
<Lines>
<DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="5948" />
<DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="5964" />
</Lines>
<Strips>
<DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="5980" />
<DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="5996" />
</Strips>
<Polys>
<DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="6012" />
<DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="11044" />
</Polys>
</Piece>
</PolyData>
<AppendedData encoding="base64">
_AQAAAACAAAAoDAAAlwAAAA==eJzNlbENgDAMBIfyAMwJa1GxDUpLFL3tPwFpXCRyzp+3EzHWuQUUj32sa4pUnmys5qfqd3X7muPJ09XJrYfyEX3viqOrj+vbKq/bP9nzlH+y93R1oriUzorbnXduPtdn6j0ofek+ofVRPBSfqxv9b9Jz5C2/0/tVvyufVN+D+g+yPH/p0yqPWxfNmfVTd+66fXkDWuJN9w==AQAAAACAAAA8EgAAlxAAAA==eJwlVndcju0Xb4lIpSGlQdKWlVXPfe5CkjIyimT1hlLZI/V6f1HpbYgWLaSplDQ09NznJiPS0tRECw3t+fQ894/n/e/7+X6uz3XOdb7nfM9VGDEKqlYhLGtLSXw/+Q2qJQsJ3bozWN0+BtLh8yDHSBT9Tjlie7U9hvDa0WPTVvyyOhs9PXvw0osILH7yEAM2leHWt9/Qx+cGDnqexYXFn/HSFhrXfPHF3g/9mF5bgDy3Veih3AkrHK3hznwHrH9cjQICxqSq723oqC5G+TgNcjLpIexNTuHzXHMalm8dB1wxk6SqhTDzQhfkCv2AYv3DmJ/2A7qy5pMJXntxpVkxrBJZBoeuxqJTQBmWjKthomMELg8oQqtVt1FYOQlH+29C/FEj7HBqgHTBNFiTfA1vHKfAo+cZ0I9EMak5H+K29VF/4sqVTYD650D27nuapPRzBkZdzIz+8AdfMiA/yAHPNVKkW3MG0ZrDgdQvlbCjI49QS2DgY9A06MuksmNVaGgd0iPMZ6XiMscuGPNMBn+Dw8i1+Ahxwi/h4rpobDfphqqUUZAT3Q5By/pAxC8ZfigZgzU9Dlk6fmD/P4YCla/gqFTPDqm4jG25DPiVp8HtN5HskFAGktbtgJnxOewzWmGUk9JrdJTjoskcPZZN7218lM1gbfgV4t6jcvQV5OGvWxb8ep560I1ZJh6oN6JDCtW1Yk7nfT7/2eYDhp1biF8lHYD1ehiXp9ujo+4AYXK0E8kpb3Q1OA0zAxrxs3YlPFH1h80pYZi/I4btOy1ITxcxOJimgdvKeSgyMoi3ZRkstkkGwxAFYs+dafzQ+gTubYmnTO0ZHN1zCFadEKYSu94BtaYOPwk/wrTiu/AwtwZXZZejwehjiC0KxTrVl/jXxiY4OjMWL3Z5ofbDbjjJ/YIFmy0wkX2I+JOz/Boeuha3F856o0KSOQz6y0bztVtOT+NJ248gab0Zm/ZFI3Gnlmo8/Y5YaTyFR8UnoPNWKZx4xKF6ncWg+FsM7j4/hhrmAOHcWrT5tw83dGewbpheJ3RjGWy440fdNRejZDy5uOXbINrG5bD7T2hAxpEmTDa4TdXf9IJ/MpuRJR1O7Pe9DtKfxqBZPwVvKYviqvoz4B7wGO2GvmGpYTZ6G/tTKndy8fK9z5jDmUe9kP4XxVJoFDppS9w7nILbFafQfMM3SCqrJ75XMHhiqBOqvh9kXxL9QR1MuI4J6ybRp2oBup4WxiyDEew3isfVLZIQo/AWL5/Lgj5BURot8tA36CPU+swgveSj8VB7IvS+boD4T0XYNGGA867/VRht0Q9Vlc5UQZ85wV3Fg8h8LQzuEIQdUYNwKsoK5+elws6rP1Fp7lKsmfUDIhYNodxzmjq9LxPWWHCwViofVdxLUT0zEw2jXOF2ZTbYRLThRekToHXWFhz2dqBAJIfYPRgKx0fGscbwKNFW7kepbeMhfWmYnRWthjWODL5ISkTXLBM0HS7CbDEftLNqgr+CGzGTHYIijckgffsT2mx4gf1ccXzvmgEL4m5hSdI+zJGrhTSNIIwU/pey/1gDjUPvMPHcEjCqjEUXPx5G7ZElMzkWxByXCqxfMYXVaeEo+iQUNSzZrC9VlUjrBuGWvifEhlc1MBHKwt74gMKvFX0oZD5GaC2Rh5IDEyg5uw/+9JK6qTFuy6kHabOl5NA5P9ybVcLnuwajMbeCTUXPkCZfXeRAhqUmMRE5l3wwm4FU3QFkaYuTK3VXwEmp+j/n6VJ3f/zwsh1KPTToDW8d0eLlKJ93+lsCZzoOw66bNRRMKGFVWDGscJiEf0RjoeROFRz6WgAXjYNh595JLKxcSle2dRI5gd9R/IwCvSD2AGhfnkALj1n0uNkIIfTNC8nv76nNK5pwu0cLzFBQJH+u9IQNzXLsgVPH4OwrBoOMh7HXIw5ef1SBOpn/3simjOHezgo+Li0Ph/FjVTCbp0eGRgbDhQQe3x/EijcSRS+n+fj92vvU6o0MrurUIlfvEKG8r3JhwHshGfjRl4q/7AVeMj6gfqUJ2M/nQtmlLTDcPgrJ2q5gs+AXYZjRBo1y7azVFkVw9R8G51dz+XHLPK9SAvv/w2rJ/kRSMwNbAxeTjRIbjUTaAqhOAxasPc2FkCGaOGu7EaN2cnDT7k+Y7lAINfNCsZ4oxroTHNDeHovLdZ/iswW/ffavQqwKz8GJB74QqvQcB1+NobYMEnqOM+Hckm684GYBLKsd8FpwGi9k74MvOpmEg18m+hbpk0Eb8/HGRAn/vZzUaHS0+QRb9q/DZ2qhsPRbD1xwP4CGVaY4J5wHWYO2eFFhJ/W8hOFrurl2laHlch40tGjRTvOcCc2x/7TW/DkHjK1H/txJmy1YAI4rJ/G44hq6ec5PwjCS4fN1AVksV7vaPz5G1xhOoculx9TkS2VawG4aG/b0sh+uXU4bXGYwr6QX5SIyYdX6jZh4rAllvNxgVroX2ux/gSLGHcT/LDJgHjsZbbiWoGLwCnJTSlHl3FaggiPhzYdCvHI3GFry0sG0kgfv32nRUcXrqBP6t2HL4zBq23A1hKYxGOj8idheFsCKmfMFPtIcarLEHX2D50HD7hYQXj+KaVKd2LGpEYR4f8HiM+3oWF5L9DqfwnnTkTCPESJciVJo2mMDPQ4Ohiu1fkD/fWM4dKGZapvRB08bZoLgihQQezYGinXOUO5SCX//bIPPzqf4PWBr2Q7WoaN8n/+XnID1O5aCyWMdconCEDgsHkRzaXFULNcBxeeT/Lop5bVQ6TsYHJpaTEudm2S1fS5AF+u0gtnVGTCQnkSVCDymwGEaMkLm889fdB0B+QuZ7D945u9dGrJ6lNqqq0FXnJ0AY8FEvl7GR15jh8hbMNdfQu/Vi8fo/go4vP4MtUcpHBo0hkDn3SKyjqcOmye90U5nCqd8GmHuxDW0PK9A/5rRCgqFq9EzSoLm+fWDXfA2Su/3P4Z7k4fZ4YMUKMwnUyIncOMcUeCqRxDJI2MQq82FTQ4/UUImlEoRHYPHqrK0dp04mqm583NexLTiilwzZOKW0Hq+PRhg8hDuLFSmhXXe4xKrRjz8ewbTN/mgqmEPv2/DRM1x2crWPzWkd7+ehMDDmoRv4GI6l8uDg/lyuMy5GVzjRyCp/yC+fCNONvV2gclKOeKgz0wYX8SATv1LcGlRJd2lHuOESxKEXpMgt5kU4Zw9PuC8cDH55ngjvl76BMBYm4zUQNzQeRN/hDXDIYcG6FXjYmoQC2c9Cidainh4VDEWu0oMiAUfh/FGvhcWXF8IcqviIXOMwkD5tyAxcBWePI1CjS1fQMV3GoLkF2DhizhiYEMPvHvvhIHK5vBekwPrnELw7fdXRL1JL1w2ek2F2W2GxBO3MPj8V7SUr8VszQ4UWfZbG6+TmNLdC06dvxe7sAkoav6AZJt9RLCyDYx840BVhTB0JGcTQ6ORwBwVw5LdpbjkwGp0+/2WzRH9WOWUgfl6InSZwQs8bzoNoleU2Uea04jOyFM4EiBJXtrXjntU3QnNJgH6+U8u/OIIgbJyIRocHgeJbmlKyYiNKgQDTT0rCF/ZyzjU9HvPhn2CjTFqMCcyBLLuFEJ2mDesUHsKojca4bSsD7xR8oGwpsfg0i8DtVYvYYLTip37ZenPT91xvvV3ZA2Oot5lWxzfixDWrEAKST6BtCeRMJgnQqZFlkLLonAKevbhEXkusGL00bX1DlqGDEBW8DrcsEYKjd7+Ak+JFLjRGgj2P2gcC3ejnn2YS7/lceHdjGloFPsXTmVlEiF16uBGOqDtyiFwiYjkz6OVcym2nmDArf4W8UjrKzvqpTvx94YZpOkIF4808nDQ6nbhw4ANVPV3LspeO1N4LPAacVJuM9GeIEn4pfFg/3wtqLOWIc9HDqJXjx8uVs9Bo3v14EexseRIOPZmp4HG9p+EnNMkW1RxEiRvTaKuuDZpsfArFVVgAC6G1VTIwX5cdJqL202z0ePFLSrwDYN+VdO4y9vTCDwKqcqoGDC5xoHOVmVUsHcGj5PDcPjJEO5dbss23aaGf9cm4bvQeaTg8Cs4uIDCyyc+AbU1DR4VTsHqThm6nP5IiO0eBSlZYTro+jywqO4GD92FtOLoNnBW7seYdHm6SmstlhVsR+uEeHih3w0qi8wLu3Wk8VELA6edMomG5pk4o5UD9BVhiGF64bjpOPQYuvL9ZHlQG/Tk7YTi9EX0udKfsOW0Eb+2bU192Gldiu4lanT43ChQ0W/iz7tcoxf433/OxxprcmCZ0DjoX1MnLwaL4OLjY1hxW5P89V4MFEuK4IrtJqK2JBGOeDdg/LYYWJt6EzZDB+tOmSrdeZ1BInoYuK906DgzJWjRauTns8nfB0waf2DuIx16pcBezA38xo8VI3UOBxy7sbdYDG8KbsdZ1D2oD9InNAfLsLApAboKJtkqUa9RyPIB1DwQh6vD73Glvh1E6p/AHd1daLxeCgYFQ1kPd46ik3wla26eNwzfYsC/NY9/f/FQJo5pp2LihDL9SohGn9BgFHihTYefrcL9iVv4uaXG92DG9pOwa/8Ses/qDhQnnvJ5UZNCEGcKQDRYlu6LzwBBs1BQHFWnpzZ/ghxWOar4CdOGB+/Bxt966Hrl48PCd4b3b03hXJM6gpNZTi00q4KJDjV6e3owpHHdAM5Mg7vXF6z88neBpkYNBFUycMjGh5/n9cONcC3XCSut9WnLiHaIOxCD6gOLyD2BJbh3Fwvvntckd/X1gVLMOJp//gl3PQSwwmQQn12VIx2W6qDQbDbaWyuRuwPScVS5Bif9Z5OX1G+D26lMSDNSpKwu5kPpRWe+V08ybeD5cICP7SyXQdrx67Ckbwb9PLYZO64JgBmlRe/IG8dUkuD7eWIMDzs2cjD66C9qKvwVteK+P+tm8Q5KMZUBI9fTUN5Shf3mbWDRVoFXnpfipGE4LDzYhksNUtDu9WmYVcAD/YYRtNU3JcSXSwOqypD5sqNQlFkKcyejcf2eSNBJSeL3ZyTnFSio3IdzyRqklkAJHDFkwEHbm7qhJU3ZreagqkEeNRFYRCx8y+A630qKeaTKao+NwK/XHkD0jjIYexdDTIMWGVg/DW/CGsDddDb90fsmvvvejm+kNMj59x2BM2MEpXOPg1SUAqbedwedR4/ZLyS/4MBdLsrslyLli/2oIedUlOiXpQ3KEIRNQ3Hta12aM/cT3FX4DhER+Si/7yAsS+jCiW/deHrTIWA92QfSpDD5PvC398cTWE4spXv9+8Ds2BvouvcVt4onAHP9G3jpCdIJtedAwTsFlBuLID2CBjv7QeKpgyJdFjcBh5kxfC5bgqprZsCQUj3aSevSmtH+mFM7Do1WNXhglEvID2ihzpdmXO43CD0/xzEtQ4C+KsOl5H95Y4mLJskKawTfa5dwiHUArFy+gs7d4yCxNZewYHdg+KAf7kqTpO8er8c8t2c4/rgV1a0KYKzrLbYqKNKH1OPQf+4b2GP6kNK7kIBf+4IBJYTpdIkqcNsQj1P2IiQj+haVixk4MGcefXKRELv+FUNczhOjeR/GsXpmC9Zf24l0vyeMPCiEBMvlZNBgOhzbN4b2EhdQ0n42/rjK4LJUOxSr+MV+a1xInDqnTj67wEHZuwN459IKulhAH0Y8V4LzHEE6bsYAuKk5wUEzJdKebof/A0pDPBY=AAAAAACAAAAAAAAAAAAAAACAAAAAAAAAAAAAAACAAAAAAAAAAAAAAACAAAAAAAAAAAAAAACAAAAAAAAAAAAAAACAAAAAAAAAAQAAAACAAABwRAAAqw4AAA==eJxd23fYn/MVBvA3QuwYMSu2iJ3YK0bMILGC2BJbSKzYK0FrVKtFhy4UHUqHtnRpQ2lLB93VGaqtqmqpUTr0j96fXNd7v//c13Of3+95n+8459znfJ/fwMD//4YEFwgODS4YXCg4LLhwcJH6nvssGlwsuHhwieCSweHBper7S9d9lgkuW88xrHjPNSK4XHD54ArBFYMrBVcOviW4Sj2H5xoZXDW4Wo3D91cPrhFcM2iejMv93H+t4NrBder7o4LrBkcH1wuuH9wguGFwo+DGwU3qOYzT/ccEx9bnjNvzbBrcLLh5cIvglsGtit86uE1w2+B2we3re+Pqe1uUHW+cxr1D0HpaH/O7Y9B4jG942fHmxTyNLrQuOwV3Ljt+fHCXes5dg7sFdw+aJ+PcI2j85nnP4ITgXsG9g9Zrn+DE4KQgv983uF/QvjG/5n//+v8HBM0f/ziw7PjJwYOCBwcPCU4JHhrcsOx462Ec1kHcOiy4bCFe3Dg8eETwyOBRwaODuxTizRu/ET89nzhnfszHpPqc7w0tO/6YGof4OKHs+KlB82n+ppUdb7zGZ7/aB9Pq8xuWHW9erIdx7Ft2PL/kj/xvlbLjjw0eFzw+aL+fELSP7Xf7/8Sg9bcfTgrKU/6//zu87Hjzb975H785uZ7H/rfvTwlOr8/7vv1of54aPC04IzgzaJ7dz3qeHjwjKB+alzOD5ues4NnBWUH5Sv7yd07Z/cmL5wbPC65Rdvz5wQuCFwaNx/guqvu6z8VB+1O8uCRovOLipcHLgrODc4KXB68IXhkUv82v59uo7Hj7yf55a/BtwauCVweNz3jFBeMwrmuC1wbfHrwu+I6g/SbuvjMoP/HX64PvCr47aP/yrxuCNwZvCr4nSI+8N/i+4PuD9Bm9Js/dHNyjEP+B4AeDHwp+OEiPeA7r/JHgLcFbg7cFPxq8PXhH0HzcGfxY8OPBTxTiPxnkN3fVc9Or5uFTQflLnBfXh5YdL+5ZH/FjQtnx5sU83R28sez4e4L8mp9bh5uL/3RQXhW/rik7Xtzhl58J2mefDd5Z1+zGt1fZ8fxQPOA/5vtzwXuDny87/gtBfspvv1h2/H3B+4NfCsqX1osfTSs73n6y7+SLLwfpRjpSfpXP+fm6ZceLm3SyuugrwVuDX63n+Fo9jzjK3+yjm8qOF4fkwweCXw9+Izg3+GDwoaD8xH/ElW8G7S/50rpfU3Y8f+I34u/QsuP50/TiJ5Qdbz3tW/v5+rLjHw6K5/LTI8FvBb8d/E6Q3ns0qH4R3+hU+/ix4NWFePtfHP5ucJtC/PeC3w/+ICjO0mv2z7GFePvauj8efKgQry6RZ54I/jD4o+CPg/bXT4L00U+D5stzG8fYsuPNl3n9WfDnQbr/F8Eng78s3vN4jl8Ffx38TfC3wd8F5dF5waeCTwd/X9fszwT/EJRf1B1jy463TuKBunW3suPNBz3C//8YpDf4wx1lx8sT4ol88afgs8E/B9XLzwX1FfRP9B3+ElQHqAueD5on8/bX4Lyg+ZfXXwjyx6nBvwX/Hnyxrl8q/h9B4zJOevnl4CtB8dj887fJZcf7vv/zSvGvlt38vBb8Z5AOfz34Rj23uGweje9fwX8H1XX/qefUT/hv8PBCvDrJPL8Z5PfynAJGfbl28fpw1nNI+Hm55rf8eIHY7Tv3sV7Q/JpP+2hofZ/f8C/68qay4+kO8du6vVx2PB0mHy6Y/0/3LZTrYUHrIU/bT9bnP8VbD+um/8OvxBlx5fmy4/nFvKB1eKnsePNundcImn92vLgkHi0c+yJB82R+Fg3ap4vlWp6UBxYPT0/eW7x6Un5aIjxdRr8tGV7cH57rpYLi6dK5XqYK8/n9/fD0Mb28bHh5Rt4ZEX65so+o+ROH7GvzvEbxy+d7KwRXDIof4slK4eVB/3dl61rrv8qQwYi3H+RV+dd+pNfp95H5vHytn6K/smrsqwXpCf13+UQeEQ/Eh9XNW3DN4FpB/Rx1/Nrh9WPUSeuEFz/486jw6wblRXlydHj1Lf0ypux49fR64dcPqgs2yPWGwfl9r1zbVxsHnXtsUusijpp3nxuTzzmnWLp48YVu5If8Ul9jbHh9cvXApuH1Oe2HzcLTcVcVL15snustglsG6dWtcr11cJvgtsHtgvpc9sX2QXp7XK7pa3X7DhWv7y5e/NaHsC/kC3FB31W+EycWKN7671jj0fd0Lmf97Ydlipe35DF9B/Xr7sXbf/ajfo94wo7n3zvVPpPH1fXisjgxonjPZ77M36Vlx+uD6GPRmfKx+K/f8GrZ8eoQ8W/n3P+MsuP5Cz/jH+OD6uldym98jl4S58WNdWv/sOPVq3S5PqE+xg3Fi6f8nN+LkzOLF1fFU3p61yGD7Xh5y/zsls+JU/KKPCPPyq/ixE5lx/N/ccL8iwfs8rG6ZXf+XPqOn/GvgbLj9U+Ne88hg/+/5xlZ+2T+/gjS5XS6PvmcgcF2/NSg9bSO8pI+tvMtusC5/4TSD+x48U0fUZzbK6hekNec4++da+sr3tE18s5CZcfvE9TXl0/VKfLqqHqOZ4vXT7fedBf/Wa7GK3+z4/Ut9DEmyicDg+34SUH5Zd+gcy77zfm8fhw7XnyVN+j8XcuON25xS7wSL+laOkxcZcfvV+tjXTYqO95996/70wPimfcb9EPmBQ/I551j6RvqH8kb+vL69Afme3TF5KDzH/qdbqdr5aWDgupcdai6lA6QR+XVg8uP+a/+pj7DIeGnBPWbD831YUH15VNB/saO108+PLx+0xG5HlbrZp2OKP7IIL1OvxvPUeGdPx6da+thv/OXY8TJIYOv2fmRfpH+6dTw+j7iuHg/rex463lsrfdxudZ37T7s8bHLs/psJ+Ra/+3EXNtf9pU6RN/kpPp/7ntyUN+XHe//nRKcHhT3T821uu284vUL1Lndl4F4db/6nh/yS3Fr51yLa7cF1SPimPMO+4j+0O+0T+1PfZ3T8nn+ZV5nBM27emVmkI4fV+t0es3zGbm27o8Ub768H6euPbPmUb/LvIlv+g7inPfmzsr13oV4eZC/6QPQjxBPF4hX9od6fMe6ZqefjMf45MGz7buBwYi3rvxOHfhc8eqyWbU+6ivnChCvD/9gUN0lrz5e/MT63jm51u8eW7x+lHitflu1EK9PwM/VdecG9ZXUKd3PxKtn1BPOY28uxDuHNZ8b13yPqfml/53biMfOdegfusx52/LFq6vUp+Iv/aVvfF6u6fDXiueX9jNdZf86hz4/1+qfkcUbLz1AB1wQnBr+wlyrI14onu5Wf8vrFwW953ex+R0YjHj9FXrikor/k4sX78TxQ2o8EE8X0AN0wKVBfV7nhPqZ9gs9QB/I9/QAXQjx4jH9dllwv0L87KBzcXrA+bj3Qufwp1zTZeadbpsTNE51zOvFmw/vgVyea++D3FK895DoZnqAvtavoQv4tzzAz+UJeVlekWfkffl+ZCGeLrQf3M/6y9/yPB3h/uxv1DW784GXy473vhw/Fv8XKTvevvJnf9nfzgntH/udHU8HyB/yifjAjtfvmBuki3YpO95+fypoXcaVHU9n0B36wOI9O14/Wt9a/n+x7Hjxj07Rv3it7Hh5xHmFvGE+nRvQQZPLjueXrfv3Kzue7qGP1DfGxY4Xb/gz//bc7HjvX3sPna6kM1ct3vyqD+moB8qOp2OcozhXsZ/PLN75kPu5z8Jlx+tH0Wf02oiy4533jA/SQfY1nSUfrlx2PD2kL02/0DlbFk8P6SdMKrv7OJ+jg84pXn7WD9EPozfZ8foHdAMdMarsePqGDpLn6YF7ipdvrKd1nF12PD1EH9FN08qO13dW79PL9BM9pe+gvmXH66Ppq3kv1Dmi/qJ9pl54rHj6RNyiU/TtvF9B10wdGGyfzwfpOP0i9TU7nm6TF+wH+4Ydb148r3x+V9nx1tO6qxc2KTveOIxXv5SOY8fP12f5/M7BiWXHjy6ev9D9+jp05mplx+sH0xP0xRJlx8uL9KNzL3n0kuLpKOeO4qpzMHW4cel771k8vUg/eu94Stnxfl+lv0Pf3V92/Gk1T1cE6Us6VN6Rnw4v3vkTf+ffG5Udrz+rv0BH6Fex453D6gdZF/rwxOL9XkYdxe/1t7YoXl+6+1x+T7dP8eIOHcxfDio7Xl/e/dxnQtnxzo/oJv2ttcqOp7Pn5D6zg1PKjqfDnYPT3fr46kbxpt//xdPpvu88VR3n/Mj7kFPKjqfj6XX6na5nx/PDA4tftOx4v2PwfPpRM8qO18fiH/zC+y7seH0a9YE4tGPZt6378Ttx6YCyX1DzYLwn1nxvX7x6RV3H3/WB2bv+w19Z472inm/ewGA7Xj/Uetmf+m/Whz6lV9nx6i710pU1rpPqOfV79enVZSeUHU+Xi2d0yfCy42/NtTrVvvde9q3F06n6jOoLOviB4r2Xp99jHE+XHW8/6SOeXuOdXrzfQdA98ry8P6t47zuLJ84lHy473nu/zkvl9yfKjvfeu/fd3df9Vi/e+zl0mnPPGWXHy+vOgemnzcqOlz/Ef+eTV5Yd771W+dr5xnNlx3t/g27tfu/6xTsPUZeoR6aVHS9OiC/ikD7VBcU7z1UfObenG9jx3oO3HtbturLj1cfeV9K/tl7WyXth3kuYUbz3hfRJZ9W4Ty2e3qV/9a9nlh3vPQDndPok/tjx3ldWR8tf8tz2xXufzDypL+zja4tXj9OL9OOTZcfzb3GA/hhXdjwdzk/9Tsz7HOx4eVGdLt6dX3a8c1D5RHzW/7uvePNi3/idnvm4rnjzrl9B/z5a9vm6uPKEfPJ62fH0lbwlj+k3rlW8fs8itU7ee9qpeOdK9J5+hD7EEsXrD6hz1D0Ty44Xb8VZdZj1sY78Uv9IP25urt8sO37Nmg/6g/5bs/jR9fzOGW8vO358eL8b8/sgfj6+eH7rvR3viTxTdrzfnegfGufcsuPVgepC7ws/UXa8vtVKNc/m/czi3cc6yVd71Hri6VX6xH0vLDv+fygGlzE=AQAAAACAAADQFgAAjQQAAA==eJw112WDCAYAgGF3Dqe7u7u7u7u7u7u7u7t7TLcxxnQbY0wb08Z024d79n55fsMbOlRIYRmekRiVMRib8ZiQSZicqZiWGZiZ2ZiTeZifhViUJVia5ViRVVidtViXDdiYzdiSbdiendiVPdib/TiQQzicoziWEziZ0ziTczifi7iUK7iaa7mem7iVO7ibe7mfB3mYx3iSZ3ieF3mZV3mdt3iX9/mQT/icL/ma7/iRX/idgQEhhmEwIzIKozMW4zIBEzMZUzIN0zMTszIHczMfC7IIi7MUy7ICK7Maa7IO67MRm7IFW7MdO7ILu7MX+3IAB3MYR3IMx3MSp3IGZ3MeF3IJl3MV13AdN3ILt3MX93AfD/AQj/IET/McL/ASr/Aab/IO7/EBH/MZX/AV3/IDP/MbAwJDDGI4RmBkRmNMxmF8JmJSpmBqpmNGZmF25mJeFmBhFmNJlmF5VmJV1mBt1mNDNmFztmJbdmBndmNP9mF/DuJQjuBojuNETuF0zuJcLuBiLuNK/sAfuYGbuY07+RN/5i/8lUd4nKd4lr/xd/7BP3mDt/kX/+YjPuU//Jdv+J6f+JWhQoNhGZ6RGJUxGJvxmJBJmJypmJYZmJnZmJN5mJ+FWJQlWJrlWJFVWJ21WJcN2JjN2JJt2J6d2JU92Jv9OJBDOJyjOJYTOJnTOJNzOJ+LuJQruJpruZ6buJU7uJt7uZ8HeZjHeJJneJ4XeZlXeZ23eJf3+ZBP+Jwv+Zrv+JFf+J2BQSGGYTAjMgqjMxbjMgETMxlTMg3TMxOzMgdzMx8LsgiLsxTLsgIrsxprsg7rsxGbsgVbsx07sgu7sxf7cgAHcxhHcgzHcxKncgZncx4XcgmXcxXXcB03cgu3cxf3cB8P8BCP8gRP8xwv8BKv8Bpv8g7v8QEf8xlf8BXf8gM/8xsDwoQYxHCMwMiMxpiMw/hMxKRMwdRMx4zMwuzMxbwswMIsxpIsw/KsxKqswdqsx4ZswuZsxbbswM7sxp7sw/4cxKEcwdEcx4mcwumcxblcwMVcxpX8gT9yAzdzG3fyJ/7MX/grj/A4T/Esf+Pv/IN/8gZv8y/+zUd8yn/4L9/wPT/xK/8f/tAMy/CMxKiMwdiMx4RMwuRMxbTMwMzMxpzMw/wsxKIswdIsx4qswuqsxbpswMZsxpZsw/bsxK7swd7sx4EcwuEcxbGcwMmcxpmcw/lcxKVcwdVcy/XcxK3cwd3cy/08yMM8xpM8w/O8yMu8yuu8xbu8z4d8wud8ydd8x4/8wu8MDBdiGAYzIqMwOmMxLhMwMZMxJdMwPTMxK3MwN/OxIIuwOEuxLCuwMquxJuuwPhuxKVuwNduxI7uwO3uxLwdwMIdxJMdwPCdxKmdwNudxIZdwOVdxDddxI7dwO3dxD/fxAA/xKE/wNM/xAi/xCq/xJu/wHh/wMZ/xBV/xLT/wM78xIDjEIIZjBEZmNMZkHMZnIiZlCqZmOmZkFmZnLuZlARZmMZZkGZZnJVZlDdZmPTZkEzZnK7ZlB3ZmN/ZkH/bnIA7lCI7mOE7kFP4Hk3Nsog==
</AppendedData>
</VTKFile>
50 changes: 50 additions & 0 deletions tests/test_pre_processing.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
import subprocess
import pytest
from pathlib import Path
import numpy as np

import vtk
from dolfin import Mesh, HDF5File, XDMFFile, FunctionSpace, Function
Expand Down Expand Up @@ -332,6 +333,55 @@ def test_mesh_model_with_variable_solid_thickness(tmpdir):
f"VTU mesh has diameter {diameter_at_outlet} at outlet, expected {expected_diameter_at_outlet}"


def test_mesh_model_with_painted_solid_thickness(tmpdir):
"""
Test meshing procedure on a specific 3D model with painted solid thickness.
"""
# Define test data paths
original_model_path = Path("tests/test_data/cylinder/cylinder.vtp")
thickness_file_path = original_model_path.with_name(original_model_path.stem + "_aneudraw_surface.vtp")

# Copy the original model to tmpdir
model_path = copy_original_model_to_tmpdir(original_model_path, tmpdir)

# Copy the thickness file to tmpdir
copied_thickness_file_path = model_path.with_name(model_path.stem + "_aneudraw_surface.vtp")
copied_thickness_file_path.write_text(thickness_file_path.read_text())

# Define expected values
expected_num_points = 273
expected_num_cells = 1175
expected_diameter_at_inlet = 1.7317981719970703
expected_diameter_at_outlet = 1.7225000858306885

# Get default input parameters
common_input = read_command_line(str(model_path))
common_input.update(
dict(
solid_thickness="painted",
solid_thickness_parameters=[0.3, 0.4, 0.1],
meshing_method="constant",
edge_length=0.5,
add_flow_extensions=False,
visualize=False,
compress_mesh=False
)
)

# Run pre processing and assert mesh sizes
model_path, mesh_vtu, mesh_hdf5 = run_pre_processing_with_common_input(model_path, common_input)
assert_mesh_sizes(mesh_vtu, mesh_hdf5, expected_num_points, expected_num_cells)

# Compute diameter at inlet and outlet
diameter_at_inlet = compute_cylinder_diameter_at_cut(mesh_vtu, [0, -0.6, 0], [0, 1, 0])
diameter_at_outlet = compute_cylinder_diameter_at_cut(mesh_vtu, [0, 0.6, 0], [0, 1, 0])

assert np.isclose(diameter_at_inlet, expected_diameter_at_inlet, rtol=1e-6), \
f"VTU mesh has diameter {diameter_at_inlet} at inlet, expected {expected_diameter_at_inlet}"
assert np.isclose(diameter_at_outlet, expected_diameter_at_outlet, rtol=1e-6), \
f"VTU mesh has diameter {diameter_at_outlet} at outlet, expected {expected_diameter_at_outlet}"


def test_mesh_model_with_thickness_to_entity_id_mapping(tmpdir):
"""
Test meshing procedure with thickness-to-entity-ID mapping by verifying the count of entity IDs per range.
Expand Down
Loading