Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Optimize Lazy Camera Loading for Efficient Compression of Large Files with Numerous Images and Corresponding Cameras (#8) #9

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions compress.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
from utils.image_utils import psnr
from utils.loss_utils import ssim

from utils.camera_utils import LazyCameraLoader

def unique_output_folder():
if os.getenv("OAR_JOB_ID"):
Expand Down Expand Up @@ -72,6 +73,10 @@ def calc_importance(
loss.backward()
num_pixels += rendering.shape[1]*rendering.shape[2]

# Free up memory
del camera
torch.cuda.empty_cache()

importance = torch.cat(
[gaussians._features_dc.grad, gaussians._features_rest.grad],
1,
Expand Down
9 changes: 5 additions & 4 deletions finetune.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,17 +24,14 @@ def finetune(scene: Scene, dataset, opt, comp, pipe, testing_iterations, debug_f
scene.gaussians.training_setup(opt)
scene.gaussians.update_learning_rate(first_iter)

viewpoint_stack = None
ema_loss_for_log = 0.0
progress_bar = tqdm(range(first_iter, max_iter), desc="Training progress")
first_iter += 1
for iteration in range(first_iter, max_iter + 1):
iter_start.record()

# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack) - 1))
viewpoint_cam = next(iter(scene.getTrainCameras()))

# Render
if (iteration - 1) == debug_from:
Expand All @@ -55,6 +52,10 @@ def finetune(scene: Scene, dataset, opt, comp, pipe, testing_iterations, debug_f
)
loss.backward()

# Free up memory
del viewpoint_cam
torch.cuda.empty_cache()

iter_end.record()
scene.gaussians.update_learning_rate(iteration)

Expand Down
8 changes: 4 additions & 4 deletions scene/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@
from scene.dataset_readers import sceneLoadTypeCallbacks
from scene.gaussian_model import GaussianModel
from arguments import ModelParams
from utils.camera_utils import cameraList_from_camInfos, camera_to_JSON
from utils.camera_utils import LazyCameraLoader, camera_to_JSON
from glob import glob


Expand Down Expand Up @@ -91,13 +91,13 @@ def __init__(

for resolution_scale in resolution_scales:
print("Loading Training Cameras")
self.train_cameras[resolution_scale] = cameraList_from_camInfos(
self.train_cameras[resolution_scale] = LazyCameraLoader(
scene_info.train_cameras, resolution_scale, args
)
print("Loading Test Cameras")
self.test_cameras[resolution_scale] = cameraList_from_camInfos(
self.test_cameras[resolution_scale] = LazyCameraLoader(
scene_info.test_cameras, resolution_scale, args
)
)

if self.loaded_iter:
self.gaussians.load(
Expand Down
29 changes: 23 additions & 6 deletions utils/camera_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,11 +11,33 @@

from scene.cameras import Camera
import numpy as np
import torch
from utils.general_utils import PILtoTorch
from utils.graphics_utils import fov2focal

WARNED = False

class LazyCameraLoader:
def __init__(self, cam_infos, resolution_scale, args):
self.cam_infos = cam_infos
self.resolution_scale = resolution_scale
self.args = args

def get_camera(self, index):
cam_info = self.cam_infos[index]
return loadCam(self.args, index, cam_info, self.resolution_scale)

def __len__(self):
return len(self.cam_infos)

def __getitem__(self, index):
return self.get_camera(index)

def __iter__(self):
for index in range(len(self.cam_infos)):
yield self.get_camera(index)
torch.cuda.empty_cache()

def loadCam(args, id, cam_info, resolution_scale):
orig_w, orig_h = cam_info.image.size

Expand Down Expand Up @@ -52,12 +74,7 @@ def loadCam(args, id, cam_info, resolution_scale):
image_name=cam_info.image_name, uid=id, data_device=args.data_device)

def cameraList_from_camInfos(cam_infos, resolution_scale, args):
camera_list = []

for id, c in enumerate(cam_infos):
camera_list.append(loadCam(args, id, c, resolution_scale))

return camera_list
return LazyCameraLoader(cam_infos, resolution_scale, args)

def camera_to_JSON(id, camera : Camera):
Rt = np.zeros((4, 4))
Expand Down