Skip to content

Kwangkee/FL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation


  • Federated Learning Market

Advances and Open Problems in Federated Learning, https://arxiv.org/abs/1912.04977
A Field Guide to Federated Optimization, https://arxiv.org/abs/2107.06917


Personalized FL
동적인 디바이스 환경에서 적응적 연합학습기술 개발, https://github.com/Kwangkee/FL/blob/main/AFL.md
FL@CarnegieMellon, https://github.com/Kwangkee/FL/blob/main/[email protected]
FL@Meta, https://github.com/Kwangkee/FL/blob/main/[email protected]
Benchmark for PFL, https://github.com/Kwangkee/FL/blob/main/Benchmark4PFL.md


Blockchain-enabled FL
FL@Nanyang, https://github.com/Kwangkee/FL/blob/main/[email protected]
FL@CSIRO, https://github.com/Kwangkee/FL/blob/main/[email protected]
BCFL@Korea, https://github.com/Kwangkee/FL/blob/main/[email protected]


BCFL@Equideum, https://github.com/Kwangkee/FL/blob/main/[email protected]
FL@MS, https://github.com/Kwangkee/FL/blob/main/[email protected]
FL@Apple, https://github.com/Kwangkee/FL/blob/main/[email protected]


FL@ClientSelection, https://github.com/Kwangkee/FL/blob/main/[email protected]
FL@Incentive, https://github.com/Kwangkee/FL/blob/main/[email protected]


FL@Medical, https://github.com/Kwangkee/FL/blob/main/[email protected]


https://github.com/innovation-cat/Awesome-Federated-Machine-Learning


BCFL Survey, 블록체인 융합 연합학습 (Blockchain-enabled Federated Learning)

BCFL Implementation

■ 보상/인센티브 제공 연합학습 (Incentivized Federated Learning)

■ 공정한 연합학습 (Fair Federated Learning)

■ 신뢰할 수 있는 연합학습 (Trustworthy Federated Learning)
FL-IJCAI 2022 : International Workshop on Trustworthy Federated Learning in Conjunction with IJCAI 2022 (FL-IJCAI'22), http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=156561&copyownerid=80806
Towards Trustworthy AI: Blockchain-based Architecture Design for Accountability and Fairness of Federated Learning Systems, https://ieeexplore.ieee.org/abstract/document/9686048
TrustFed: A Framework for Fair and Trustworthy Cross-Device Federated Learning in IIoT, https://ieeexplore.ieee.org/abstract/document/9416805

■ 설명 가능한 연합학습 (eXplainable Federated Learning) EVFL: An explainable vertical federated learning for data-oriented Artificial Intelligence systems, https://www.sciencedirect.com/science/article/abs/pii/S1383762122000583
Interpret Federated Learning with Shapley Values, https://arxiv.org/pdf/1905.04519
Explainable Federated Learning for Taxi Travel Time Prediction, www.scitepress.org/Papers/2021/104856/104856.pdf

■ 통계적/시스템적 이질성에 강인한 적응적 연합학습 (Adaptive/Personalized Federated Learning)
Federated Meta-Learning with Fast Convergence and Efficient Communication, https://arxiv.org/abs/1802.07876
Improving Federated Learning Personalization via Model Agnostic Meta Learning, https://arxiv.org/abs/1909.12488
Personalized Federated Learning: A Meta-Learning Approach, https://arxiv.org/abs/2002.07948
Towards personalized federated learning, https://scholar.google.com/citations?view_op=view_citation&hl=ko&user=eXgoTXMAAAAJ&sortby=pubdate&citation_for_view=eXgoTXMAAAAJ:0d9pApVQ-n0C


About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published