Skip to content

Commit

Permalink
Update README.md
Browse files Browse the repository at this point in the history
Add ICCAD'18 papers.
  • Loading branch information
fengbintu authored Sep 8, 2018
1 parent a335034 commit 00fdecc
Showing 1 changed file with 21 additions and 1 deletion.
22 changes: 21 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ My name is Fengbin Tu. I'm currently pursuing my Ph.D. degree with the Institute
- 2015: [ISCA](#2015-isca), [ASPLOS](#2015-asplos), [FPGA](#2015-fpga), [DAC](#2015-dac)
- 2016: [ISSCC](#2016-isscc), [ISCA](#2016-isca), [MICRO](#2016-micro), [HPCA](#2016-hpca), [DAC](#2016-dac), [FPGA](#2016-fpga), [ICCAD](#2016-iccad), [DATE](#2016-date), [ASPDAC](#2016-aspdac), [VLSI](#2016-vlsi), [FPL](#2016-fpl)
- 2017: [ISSCC](#2017-isscc), [ISCA](#2017-isca), [MICRO](#2017-micro), [HPCA](#2017-hpca), [ASPLOS](#2017-asplos), [DAC](#2017-dac), [FPGA](#2017-fpga), [ICCAD](#2017-iccad), [DATE](#2017-date), [VLSI](#2017-vlsi), [FCCM](#2017-fccm), [HotChips](#2017-hotchips)
- 2018: [ISSCC](#2018-isscc), [ISCA](#2018-isca), [HPCA](#2018-hpca), [ASPLOS](#2018-asplos), [DAC](#2018-dac), [FPGA](#2018-fpga), [DATE](#2018-date), [ASPDAC](#2018-aspdac), [VLSI](#2018-vlsi), [Hotchips](#2018-hotchips)
- 2018: [ISSCC](#2018-isscc), [ISCA](#2018-isca), [MICRO](#2018-micro), [HPCA](#2018-hpca), [ASPLOS](#2018-asplos), [DAC](#2018-dac), [FPGA](#2018-fpga), [ICCAD](#2018-iccad), [DATE](#2018-date), [ASPDAC](#2018-aspdac), [VLSI](#2018-vlsi), [Hotchips](#2018-hotchips)

- [Important Topics](#important-topics)
- [Tutorial and Survey](#tutorial-and-survey)
Expand Down Expand Up @@ -417,6 +417,26 @@ Deep Learning Accelerators** (New York Univ., IIT Kanpur)
- NVIDIA's Xavier System-on-Chip. (NVIDIA)
- Xilinx Project Everest: HW/SW Programmable Engine. (Xilinx)

### 2018 ICCAD
- **Tetris: Re-architecting Convolutional Neural Network Computation for Machine Learning Accelerators.** (CAS)
- **3DICT: A Reliable and QoS Capable Mobile Process-In-Memory Architecture for Lookup-based CNNs in 3D XPoint ReRAMs.** (Indiana - - University Bloomington, Florida International Univ.)
- **TGPA: Tile-Grained Pipeline Architecture for Low Latency CNN Inference.** (PKU, UCLA, Falcon)
- **NID: Processing Binary Convolutional Neural Network in Commodity DRAM.** (KAIST)
- **Adaptive-Precision Framework for SGD using Deep Q-Learning.** (PKU)
- **Efficient Hardware Acceleration of CNNs using Logarithmic Data Representation with Arbitrary log-base.** (Robert Bosch GmbH)
- **C-GOOD: C-code Generation Framework for Optimized On-device Deep Learning.** (SNU)
- **Mixed Size Crossbar based RRAM CNN Accelerator with Overlapped Mapping Method.** (THU)
- **FCN-Engine: Accelerating Deconvolutional Layers in Classic CNN Processors.** (HUT, CAS, NUS)
- **DNNBuilder: an Automated Tool for Building High-Performance DNN Hardware Accelerators for FPGAs.** (UIUC)
- **DIMA: A Depthwise CNN In-Memory Accelerator.** (Univ. of Central Florida)
- **EMAT: An Efficient Multi-Task Architecture for Transfer Learning using ReRAM.** (Duke)
- **FATE: Fast and Accurate Timing Error Prediction Framework for Low Power DNN Accelerator Design.** (NYU)
- **Designing Adaptive Neural Networks for Energy-Constrained Image Classification.** (CMU)
- Watermarking Deep Neural Networks for Embedded Systems. (UCLA)
- Defensive Dropout for Hardening Deep Neural Networks under Adversarial Attacks. (Northeastern Univ., Boston Univ., Florida International Univ.)
- A Cross-Layer Methodology for Design and Optimization of Networks in 2.5D Systems. (Boston Univ., UCSD)


## Important Topics
This is a collection of papers on other important topics related to neural networks. Papers of significance are marked in **bold**. My comments are in marked in *italic*.

Expand Down

0 comments on commit 00fdecc

Please sign in to comment.