This is the official codebase of the paper
Geodesic Graph Neural Network for Efficient Graph Representation Learning
Lecheng Kong, Yixin Chen, Muhan Zhang
The package is developed based on the GNN toolbox gnnfree.
We recommend installation from Conda:
git clone https://github.com/woodcutter1998/gdgnn.git
cd gdgnn
sh setup.sh
--gd_type
controls the type of geodesics, it can either be VerGD
for vertical geodesics or HorGD
for horizontal geodesics.
--num_layers
controls the number of layers in the GNN.
To run different datasets, do python run_**.py
with the parameters specified.
To search for hyperparameters, modify the hparams
variable in the run_**.py
files to specify the list of potentail hyperparameters. e.g.
hparams = {'num_layers':{2,3,4,5},
'gd_type':{'VerGD, HorGD'},
'dropout':{0.5, 0.7, 0.9}}
and do python run_**.py --psearch True
. The program performs grid-search on the hyperparameters specified.
An example command to reproduce our results on OGBG-MOLHIV dataset is:
python run_MOL.py --train_data_set ogbg-molhiv --psearch True