Skip to content

Lee-JaeWon/2024-Arxiv-Paper-List-Gaussian-Splatting

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

85 Commits
 
 
 
 

Repository files navigation

2024-Arxiv-Paper-List-Gaussian-Splatting

This is crawled to find out about the 2024 Gaussian Splatting papers in arxiv. There may be errors, so please leave a Pull Request or Issue and I will actively apply it.

Updated on DECEMBER 08, 2024

The Arxiv paper, which was published in 2023, is in the Lee-JaeWon/2023-Arxiv-Paper-List-Gaussian-Splatting repository.

Paper List

# Title Authors Abstract Date Link
913 Turbo3D: Ultra-fast Text-to-3D Generation Hanzhe Hu,Tianwei Yin,Fujun Luan,Yiwei Hu,Hao Tan,Zexiang Xu,Sai Bi,Shubham Tulsiani,Kai Zhang
AbstractWe present Turbo3D, an ultra-fast text-to-3D system capable of generating high-quality Gaussian splatting assets in under one second. Turbo3D employs a rapid 4-step, 4-view diffusion generator and an efficient feed-forward Gaussian reconstructor, both operating in latent space. The 4-step, 4-view generator is a student model distilled through a novel Dual-Teacher approach, which encourages the student to learn view consistency from a multi-view teacher and photo-realism from a single-view teacher. By shifting the Gaussian reconstructor's inputs from pixel space to latent space, we eliminate the extra image decoding time and halve the transformer sequence length for maximum efficiency. Our method demonstrates superior 3D generation results compared to previous baselines, while operating in a fraction of their runtime.
December 2024. https://arxiv.org/abs/2412.04470
912 QUEEN: QUantized Efficient ENcoding of Dynamic Gaussians for Streaming Free-viewpoint Videos Sharath Girish,Tianye Li,Amrita Mazumdar,Abhinav Shrivastava,David Luebke,Shalini De Mello
AbstractOnline free-viewpoint video (FVV) streaming is a challenging problem, which is relatively under-explored. It requires incremental on-the-fly updates to a volumetric representation, fast training and rendering to satisfy real-time constraints and a small memory footprint for efficient transmission. If achieved, it can enhance user experience by enabling novel applications, e.g., 3D video conferencing and live volumetric video broadcast, among others. In this work, we propose a novel framework for QUantized and Efficient ENcoding (QUEEN) for streaming FVV using 3D Gaussian Splatting (3D-GS). QUEEN directly learns Gaussian attribute residuals between consecutive frames at each time-step without imposing any structural constraints on them, allowing for high quality reconstruction and generalizability. To efficiently store the residuals, we further propose a quantization-sparsity framework, which contains a learned latent-decoder for effectively quantizing attribute residuals other than Gaussian positions and a learned gating module to sparsify position residuals. We propose to use the Gaussian viewspace gradient difference vector as a signal to separate the static and dynamic content of the scene. It acts as a guide for effective sparsity learning and speeds up training. On diverse FVV benchmarks, QUEEN outperforms the state-of-the-art online FVV methods on all metrics. Notably, for several highly dynamic scenes, it reduces the model size to just 0.7 MB per frame while training in under 5 sec and rendering at 350 FPS. Project website is at https://research.nvidia.com/labs/amri/projects/queen
December 2024. https://arxiv.org/abs/2412.04469
911 Sparse Voxels Rasterization: Real-time High-fidelity Radiance Field Rendering Cheng Sun,Jaesung Choe,Charles Loop,Wei-Chiu Ma,Yu-Chiang Frank Wang
AbstractWe propose an efficient radiance field rendering algorithm that incorporates a rasterization process on sparse voxels without neural networks or 3D Gaussians. There are two key contributions coupled with the proposed system. The first is to render sparse voxels in the correct depth order along pixel rays by using dynamic Morton ordering. This avoids the well-known popping artifact found in Gaussian splatting. Second, we adaptively fit sparse voxels to different levels of detail within scenes, faithfully reproducing scene details while achieving high rendering frame rates. Our method improves the previous neural-free voxel grid representation by over 4db PSNR and more than 10x rendering FPS speedup, achieving state-of-the-art comparable novel-view synthesis results. Additionally, our neural-free sparse voxels are seamlessly compatible with grid-based 3D processing algorithms. We achieve promising mesh reconstruction accuracy by integrating TSDF-Fusion and Marching Cubes into our sparse grid system.
December 2024. https://arxiv.org/abs/2412.04459
910 Monocular Dynamic Gaussian Splatting is Fast and Brittle but Smooth Motion Helps Yiqing Liang,Mikhail Okunev,Mikaela Angelina Uy,Runfeng Li,Leonidas Guibas,James Tompkin,Adam W. Harley
AbstractGaussian splatting methods are emerging as a popular approach for converting multi-view image data into scene representations that allow view synthesis. In particular, there is interest in enabling view synthesis for dynamic scenes using only monocular input data -- an ill-posed and challenging problem. The fast pace of work in this area has produced multiple simultaneous papers that claim to work best, which cannot all be true. In this work, we organize, benchmark, and analyze many Gaussian-splatting-based methods, providing apples-to-apples comparisons that prior works have lacked. We use multiple existing datasets and a new instructive synthetic dataset designed to isolate factors that affect reconstruction quality. We systematically categorize Gaussian splatting methods into specific motion representation types and quantify how their differences impact performance. Empirically, we find that their rank order is well-defined in synthetic data, but the complexity of real-world data currently overwhelms the differences. Furthermore, the fast rendering speed of all Gaussian-based methods comes at the cost of brittleness in optimization. We summarize our experiments into a list of findings that can help to further progress in this lively problem setting. Project Webpage: https://lynl7130.github.io/MonoDyGauBench.github.io/
December 2024. https://arxiv.org/abs/2412.04457
909 PBDyG: Position Based Dynamic Gaussians for Motion-Aware Clothed Human Avatars Shota Sasaki,Jane Wu,Ko Nishino
AbstractThis paper introduces a novel clothed human model that can be learned from multiview RGB videos, with a particular emphasis on recovering physically accurate body and cloth movements. Our method, Position Based Dynamic Gaussians (PBDyG), realizes movement-dependent'' cloth deformation via physical simulation, rather than merely relying on pose-dependent'' rigid transformations. We model the clothed human holistically but with two distinct physical entities in contact: clothing modeled as 3D Gaussians, which are attached to a skinned SMPL body that follows the movement of the person in the input videos. The articulation of the SMPL body also drives physically-based simulation of the clothes' Gaussians to transform the avatar to novel poses. In order to run position based dynamics simulation, physical properties including mass and material stiffness are estimated from the RGB videos through Dynamic 3D Gaussian Splatting. Experiments demonstrate that our method not only accurately reproduces appearance but also enables the reconstruction of avatars wearing highly deformable garments, such as skirts or coats, which have been challenging to reconstruct using existing methods.
December 2024. https://arxiv.org/abs/2412.04433
908 EmbodiedOcc: Embodied 3D Occupancy Prediction for Vision-based Online Scene Understanding Yuqi Wu,Wenzhao Zheng,Sicheng Zuo,Yuanhui Huang,Jie Zhou,Jiwen Lu
Abstract3D occupancy prediction provides a comprehensive description of the surrounding scenes and has become an essential task for 3D perception. Most existing methods focus on offline perception from one or a few views and cannot be applied to embodied agents which demands to gradually perceive the scene through progressive embodied exploration. In this paper, we formulate an embodied 3D occupancy prediction task to target this practical scenario and propose a Gaussian-based EmbodiedOcc framework to accomplish it. We initialize the global scene with uniform 3D semantic Gaussians and progressively update local regions observed by the embodied agent. For each update, we extract semantic and structural features from the observed image and efficiently incorporate them via deformable cross-attention to refine the regional Gaussians. Finally, we employ Gaussian-to-voxel splatting to obtain the global 3D occupancy from the updated 3D Gaussians. Our EmbodiedOcc assumes an unknown (i.e., uniformly distributed) environment and maintains an explicit global memory of it with 3D Gaussians. It gradually gains knowledge through local refinement of regional Gaussians, which is consistent with how humans understand new scenes through embodied exploration. We reorganize an EmbodiedOcc-ScanNet benchmark based on local annotations to facilitate the evaluation of the embodied 3D occupancy prediction task. Experiments demonstrate that our EmbodiedOcc outperforms existing local prediction methods and accomplishes the embodied occupancy prediction with high accuracy and strong expandability. Our code is available at: https://github.com/YkiWu/EmbodiedOcc.
December 2024. https://arxiv.org/abs/2412.04380
907 DynMF: Neural Motion Factorization for Real-time Dynamic View Synthesis with 3D Gaussian Splatting Agelos Kratimenos,Jiahui Lei,Kostas Daniilidis
AbstractAccurately and efficiently modeling dynamic scenes and motions is considered so challenging a task due to temporal dynamics and motion complexity. To address these challenges, we propose DynMF, a compact and efficient representation that decomposes a dynamic scene into a few neural trajectories. We argue that the per-point motions of a dynamic scene can be decomposed into a small set of explicit or learned trajectories. Our carefully designed neural framework consisting of a tiny set of learned basis queried only in time allows for rendering speed similar to 3D Gaussian Splatting, surpassing 120 FPS, while at the same time, requiring only double the storage compared to static scenes. Our neural representation adequately constrains the inherently underconstrained motion field of a dynamic scene leading to effective and fast optimization. This is done by biding each point to motion coefficients that enforce the per-point sharing of basis trajectories. By carefully applying a sparsity loss to the motion coefficients, we are able to disentangle the motions that comprise the scene, independently control them, and generate novel motion combinations that have never been seen before. We can reach state-of-the-art render quality within just 5 minutes of training and in less than half an hour, we can synthesize novel views of dynamic scenes with superior photorealistic quality. Our representation is interpretable, efficient, and expressive enough to offer real-time view synthesis of complex dynamic scene motions, in monocular and multi-view scenarios.
December 2023. https://arxiv.org/abs/2312.00112
906 LUDVIG: Learning-free Uplifting of 2D Visual features to Gaussian Splatting scenes Juliette Marrie,Romain Menegaux,Michael Arbel,Diane Larlus,Julien Mairal
AbstractWe address the problem of extending the capabilities of vision foundation models such as DINO, SAM, and CLIP, to 3D tasks. Specifically, we introduce a novel method to uplift 2D image features into 3D Gaussian Splatting scenes. Unlike traditional approaches that rely on minimizing a reconstruction loss, our method employs a simpler and more efficient feature aggregation technique, augmented by a graph diffusion mechanism. Graph diffusion enriches features from a given model, such as CLIP, by leveraging pairwise similarities that encode 3D geometry or similarities induced by another embedding like DINOv2. Our approach achieves performance comparable to the state of the art on multiple downstream tasks while delivering significant speed-ups. Notably, we obtain competitive segmentation results using generic DINOv2 features, despite DINOv2 not being trained on millions of annotated segmentation masks like SAM. When applied to CLIP features, our method demonstrates strong performance in open-vocabulary, language-based object detection tasks, highlighting the versatility of our approach.
October 2024. https://arxiv.org/abs/2410.14462
905 Multi-View Pose-Agnostic Change Localization with Zero Labels Chamuditha Jayanga Galappaththige,Jason Lai,Lloyd Windrim,Donald Dansereau,Niko Suenderhauf,Dimity Miller
AbstractAutonomous agents often require accurate methods for detecting and localizing changes in their environment, particularly when observations are captured from unconstrained and inconsistent viewpoints. We propose a novel label-free, pose-agnostic change detection method that integrates information from multiple viewpoints to construct a change-aware 3D Gaussian Splatting (3DGS) representation of the scene. With as few as 5 images of the post-change scene, our approach can learn additional change channels in a 3DGS and produce change masks that outperform single-view techniques. Our change-aware 3D scene representation additionally enables the generation of accurate change masks for unseen viewpoints. Experimental results demonstrate state-of-the-art performance in complex multi-object scenes, achieving a 1.7$\times$ and 1.6$\times$ improvement in Mean Intersection Over Union and F1 score respectively over other baselines. We also contribute a new real-world dataset to benchmark change detection in diverse challenging scenes in the presence of lighting variations.
December 2024. https://arxiv.org/abs/2412.03911
904 DGNS: Deformable Gaussian Splatting and Dynamic Neural Surface for Monocular Dynamic 3D Reconstruction Xuesong Li,Jinguang Tong,Jie Hong,Vivien Rolland,Lars Petersson
AbstractDynamic scene reconstruction from monocular video is critical for real-world applications. This paper tackles the dual challenges of dynamic novel-view synthesis and 3D geometry reconstruction by introducing a hybrid framework: Deformable Gaussian Splatting and Dynamic Neural Surfaces (DGNS), in which both modules can leverage each other for both tasks. During training, depth maps generated by the deformable Gaussian splatting module guide the ray sampling for faster processing and provide depth supervision within the dynamic neural surface module to improve geometry reconstruction. Simultaneously, the dynamic neural surface directs the distribution of Gaussian primitives around the surface, enhancing rendering quality. To further refine depth supervision, we introduce a depth-filtering process on depth maps derived from Gaussian rasterization. Extensive experiments on public datasets demonstrate that DGNS achieves state-of-the-art performance in both novel-view synthesis and 3D reconstruction.
December 2024. https://arxiv.org/abs/2412.03910
903 Gaussians on their Way: Wasserstein-Constrained 4D Gaussian Splatting with State-Space Modeling Junli Deng,Yihao Luo
AbstractDynamic scene rendering has taken a leap forward with the rise of 4D Gaussian Splatting, but there's still one elusive challenge: how to make 3D Gaussians move through time as naturally as they would in the real world, all while keeping the motion smooth and consistent. In this paper, we unveil a fresh approach that blends state-space modeling with Wasserstein geometry, paving the way for a more fluid and coherent representation of dynamic scenes. We introduce a State Consistency Filter that merges prior predictions with the current observations, enabling Gaussians to stay true to their way over time. We also employ Wasserstein distance regularization to ensure smooth, consistent updates of Gaussian parameters, reducing motion artifacts. Lastly, we leverage Wasserstein geometry to capture both translational motion and shape deformations, creating a more physically plausible model for dynamic scenes. Our approach guides Gaussians along their natural way in the Wasserstein space, achieving smoother, more realistic motion and stronger temporal coherence. Experimental results show significant improvements in rendering quality and efficiency, outperforming current state-of-the-art techniques.
December 2024. https://arxiv.org/abs/2412.00333
902 HybridGS: Decoupling Transients and Statics with 2D and 3D Gaussian Splatting Jingyu Lin,Jiaqi Gu,Lubin Fan,Bojian Wu,Yujing Lou,Renjie Chen,Ligang Liu,Jieping Ye
AbstractGenerating high-quality novel view renderings of 3D Gaussian Splatting (3DGS) in scenes featuring transient objects is challenging. We propose a novel hybrid representation, termed as HybridGS, using 2D Gaussians for transient objects per image and maintaining traditional 3D Gaussians for the whole static scenes. Note that, the 3DGS itself is better suited for modeling static scenes that assume multi-view consistency, but the transient objects appear occasionally and do not adhere to the assumption, thus we model them as planar objects from a single view, represented with 2D Gaussians. Our novel representation decomposes the scene from the perspective of fundamental viewpoint consistency, making it more reasonable. Additionally, we present a novel multi-view regulated supervision method for 3DGS that leverages information from co-visible regions, further enhancing the distinctions between the transients and statics. Then, we propose a straightforward yet effective multi-stage training strategy to ensure robust training and high-quality view synthesis across various settings. Experiments on benchmark datasets show our state-of-the-art performance of novel view synthesis in both indoor and outdoor scenes, even in the presence of distracting elements.
December 2024. https://arxiv.org/abs/2412.03844
901 Multimodal LLM Guided Exploration and Active Mapping using Fisher Information Wen Jiang,Boshu Lei,Katrina Ashton,Kostas Daniilidis
AbstractWe present an active mapping system that could plan for long-horizon exploration goals and short-term actions with a 3D Gaussian Splatting (3DGS) representation. Existing methods either did not take advantage of recent developments in multimodal Large Language Models (LLM) or did not consider challenges in localization uncertainty, which is critical in embodied agents. We propose employing multimodal LLMs for long-horizon planning in conjunction with detailed motion planning using our information-based algorithm. By leveraging high-quality view synthesis from our 3DGS representation, our method employs a multimodal LLM as a zero-shot planner for long-horizon exploration goals from the semantic perspective. We also introduce an uncertainty-aware path proposal and selection algorithm that balances the dual objectives of maximizing the information gain for the environment while minimizing the cost of localization errors. Experiments conducted on the Gibson and Habitat-Matterport 3D datasets demonstrate state-of-the-art results of the proposed method.
October 2024. https://arxiv.org/abs/2410.17422
900 PUP 3D-GS: Principled Uncertainty Pruning for 3D Gaussian Splatting Alex Hanson,Allen Tu,Vasu Singla,Mayuka Jayawardhana,Matthias Zwicker,Tom Goldstein
AbstractRecent advances in novel view synthesis have enabled real-time rendering speeds with high reconstruction accuracy. 3D Gaussian Splatting (3D-GS), a foundational point-based parametric 3D scene representation, models scenes as large sets of 3D Gaussians. However, complex scenes can consist of millions of Gaussians, resulting in high storage and memory requirements that limit the viability of 3D-GS on devices with limited resources. Current techniques for compressing these pretrained models by pruning Gaussians rely on combining heuristics to determine which Gaussians to remove. At high compression ratios, these pruned scenes suffer from heavy degradation of visual fidelity and loss of foreground details. In this paper, we propose a principled sensitivity pruning score that preserves visual fidelity and foreground details at significantly higher compression ratios than existing approaches. It is computed as a second-order approximation of the reconstruction error on the training views with respect to the spatial parameters of each Gaussian. Additionally, we propose a multi-round prune-refine pipeline that can be applied to any pretrained 3D-GS model without changing its training pipeline. After pruning 90% of Gaussians, a substantially higher percentage than previous methods, our PUP 3D-GS pipeline increases average rendering speed by 3.56$\times$ while retaining more salient foreground information and achieving higher image quality metrics than existing techniques on scenes from the Mip-NeRF 360, Tanks & Temples, and Deep Blending datasets.
June 2024. https://arxiv.org/abs/2406.10219
899 Feed-Forward Bullet-Time Reconstruction of Dynamic Scenes from Monocular Videos Hanxue Liang,Jiawei Ren,Ashkan Mirzaei,Antonio Torralba,Ziwei Liu,Igor Gilitschenski,Sanja Fidler,Cengiz Oztireli,Huan Ling,Zan Gojcic,Jiahui Huang
AbstractRecent advancements in static feed-forward scene reconstruction have demonstrated significant progress in high-quality novel view synthesis. However, these models often struggle with generalizability across diverse environments and fail to effectively handle dynamic content. We present BTimer (short for BulletTimer), the first motion-aware feed-forward model for real-time reconstruction and novel view synthesis of dynamic scenes. Our approach reconstructs the full scene in a 3D Gaussian Splatting representation at a given target ('bullet') timestamp by aggregating information from all the context frames. Such a formulation allows BTimer to gain scalability and generalization by leveraging both static and dynamic scene datasets. Given a casual monocular dynamic video, BTimer reconstructs a bullet-time scene within 150ms while reaching state-of-the-art performance on both static and dynamic scene datasets, even compared with optimization-based approaches.
December 2024. https://arxiv.org/abs/2412.03526
898 Dense Scene Reconstruction from Light-Field Images Affected by Rolling Shutter Hermes McGriff,Renato Martins,Nicolas Andreff,Cedric Demonceaux
AbstractThis paper presents a dense depth estimation approach from light-field (LF) images that is able to compensate for strong rolling shutter (RS) effects. Our method estimates RS compensated views and dense RS compensated disparity maps. We present a two-stage method based on a 2D Gaussians Splatting that allows for a render and compare" strategy with a point cloud formulation. In the first stage, a subset of sub-aperture images is used to estimate an RS agnostic 3D shape that is related to the scene target shape up to a motion". In the second stage, the deformation of the 3D shape is computed by estimating an admissible camera motion. We demonstrate the effectiveness and advantages of this approach through several experiments conducted for different scenes and types of motions. Due to lack of suitable datasets for evaluation, we also present a new carefully designed synthetic dataset of RS LF images. The source code, trained models and dataset will be made publicly available at: https://github.com/ICB-Vision-AI/DenseRSLF
December 2024. https://arxiv.org/abs/2412.03518
897 Urban4D: Semantic-Guided 4D Gaussian Splatting for Urban Scene Reconstruction Ziwen Li,Jiaxin Huang,Runnan Chen,Yunlong Che,Yandong Guo,Tongliang Liu,Fakhri Karray,Mingming Gong
AbstractReconstructing dynamic urban scenes presents significant challenges due to their intrinsic geometric structures and spatiotemporal dynamics. Existing methods that attempt to model dynamic urban scenes without leveraging priors on potentially moving regions often produce suboptimal results. Meanwhile, approaches based on manual 3D annotations yield improved reconstruction quality but are impractical due to labor-intensive labeling. In this paper, we revisit the potential of 2D semantic maps for classifying dynamic and static Gaussians and integrating spatial and temporal dimensions for urban scene representation. We introduce Urban4D, a novel framework that employs a semantic-guided decomposition strategy inspired by advances in deep 2D semantic map generation. Our approach distinguishes potentially dynamic objects through reliable semantic Gaussians. To explicitly model dynamic objects, we propose an intuitive and effective 4D Gaussian splatting (4DGS) representation that aggregates temporal information through learnable time embeddings for each Gaussian, predicting their deformations at desired timestamps using a multilayer perceptron (MLP). For more accurate static reconstruction, we also design a k-nearest neighbor (KNN)-based consistency regularization to handle the ground surface due to its low-texture characteristic. Extensive experiments on real-world datasets demonstrate that Urban4D not only achieves comparable or better quality than previous state-of-the-art methods but also effectively captures dynamic objects while maintaining high visual fidelity for static elements.
December 2024. https://arxiv.org/abs/2412.03473
896 GaussianBeV: 3D Gaussian Representation meets Perception Models for BeV Segmentation Florian Chabot,Nicolas Granger,Guillaume Lapouge
AbstractThe Bird's-eye View (BeV) representation is widely used for 3D perception from multi-view camera images. It allows to merge features from different cameras into a common space, providing a unified representation of the 3D scene. The key component is the view transformer, which transforms image views into the BeV. However, actual view transformer methods based on geometry or cross-attention do not provide a sufficiently detailed representation of the scene, as they use a sub-sampling of the 3D space that is non-optimal for modeling the fine structures of the environment. In this paper, we propose GaussianBeV, a novel method for transforming image features to BeV by finely representing the scene using a set of 3D gaussians located and oriented in 3D space. This representation is then splattered to produce the BeV feature map by adapting recent advances in 3D representation rendering based on gaussian splatting. GaussianBeV is the first approach to use this 3D gaussian modeling and 3D scene rendering process online, i.e. without optimizing it on a specific scene and directly integrated into a single stage model for BeV scene understanding. Experiments show that the proposed representation is highly effective and place GaussianBeV as the new state-of-the-art on the BeV semantic segmentation task on the nuScenes dataset.
July 2024. https://arxiv.org/abs/2407.14108
895 PlanarSplatting: Accurate Planar Surface Reconstruction in 3 Minutes Bin Tan,Rui Yu,Yujun Shen,Nan Xue
AbstractThis paper presents PlanarSplatting, an ultra-fast and accurate surface reconstruction approach for multiview indoor images. We take the 3D planes as the main objective due to their compactness and structural expressiveness in indoor scenes, and develop an explicit optimization framework that learns to fit the expected surface of indoor scenes by splatting the 3D planes into 2.5D depth and normal maps. As our PlanarSplatting operates directly on the 3D plane primitives, it eliminates the dependencies on 2D/3D plane detection and plane matching and tracking for planar surface reconstruction. Furthermore, the essential merits of plane-based representation plus CUDA-based implementation of planar splatting functions, PlanarSplatting reconstructs an indoor scene in 3 minutes while having significantly better geometric accuracy. Thanks to our ultra-fast reconstruction speed, the largest quantitative evaluation on the ScanNet and ScanNet++ datasets over hundreds of scenes clearly demonstrated the advantages of our method. We believe that our accurate and ultrafast planar surface reconstruction method will be applied in the structured data curation for surface reconstruction in the future. The code of our CUDA implementation will be publicly available. Project page: https://icetttb.github.io/PlanarSplatting/
December 2024. https://arxiv.org/abs/2412.03451
894 2DGS-Room: Seed-Guided 2D Gaussian Splatting with Geometric Constrains for High-Fidelity Indoor Scene Reconstruction Wanting Zhang,Haodong Xiang,Zhichao Liao,Xiansong Lai,Xinghui Li,Long Zeng
AbstractThe reconstruction of indoor scenes remains challenging due to the inherent complexity of spatial structures and the prevalence of textureless regions. Recent advancements in 3D Gaussian Splatting have improved novel view synthesis with accelerated processing but have yet to deliver comparable performance in surface reconstruction. In this paper, we introduce 2DGS-Room, a novel method leveraging 2D Gaussian Splatting for high-fidelity indoor scene reconstruction. Specifically, we employ a seed-guided mechanism to control the distribution of 2D Gaussians, with the density of seed points dynamically optimized through adaptive growth and pruning mechanisms. To further improve geometric accuracy, we incorporate monocular depth and normal priors to provide constraints for details and textureless regions respectively. Additionally, multi-view consistency constraints are employed to mitigate artifacts and further enhance reconstruction quality. Extensive experiments on ScanNet and ScanNet++ datasets demonstrate that our method achieves state-of-the-art performance in indoor scene reconstruction.
December 2024. https://arxiv.org/abs/2412.03428
893 Volumetrically Consistent 3D Gaussian Rasterization Chinmay Talegaonkar,Yash Belhe,Ravi Ramamoorthi,Nicholas Antipa
AbstractRecently, 3D Gaussian Splatting (3DGS) has enabled photorealistic view synthesis at high inference speeds. However, its splatting-based rendering model makes several approximations to the rendering equation, reducing physical accuracy. We show that splatting and its approximations are unnecessary, even within a rasterizer; we instead volumetrically integrate 3D Gaussians directly to compute the transmittance across them analytically. We use this analytic transmittance to derive more physically-accurate alpha values than 3DGS, which can directly be used within their framework. The result is a method that more closely follows the volume rendering equation (similar to ray-tracing) while enjoying the speed benefits of rasterization. Our method represents opaque surfaces with higher accuracy and fewer points than 3DGS. This enables it to outperform 3DGS for view synthesis (measured in SSIM and LPIPS). Being volumetrically consistent also enables our method to work out of the box for tomography. We match the state-of-the-art 3DGS-based tomography method with fewer points. Being volumetrically consistent also enables our method to work out of the box for tomography. We match the state-of-the-art 3DGS-based tomography method with fewer points.
December 2024. https://arxiv.org/abs/2412.03378
892 SGSST: Scaling Gaussian Splatting StyleTransfer Bruno Galerne,Jianling Wang,Lara Raad,Jean-Michel Morel
AbstractApplying style transfer to a full 3D environment is a challenging task that has seen many developments since the advent of neural rendering. 3D Gaussian splatting (3DGS) has recently pushed further many limits of neural rendering in terms of training speed and reconstruction quality. This work introduces SGSST: Scaling Gaussian Splatting Style Transfer, an optimization-based method to apply style transfer to pretrained 3DGS scenes. We demonstrate that a new multiscale loss based on global neural statistics, that we name SOS for Simultaneously Optimized Scales, enables style transfer to ultra-high resolution 3D scenes. Not only SGSST pioneers 3D scene style transfer at such high image resolutions, it also produces superior visual quality as assessed by thorough qualitative, quantitative and perceptual comparisons.
December 2024. https://arxiv.org/abs/2412.03371
891 Geometry-guided Cross-view Diffusion for One-to-many Cross-view Image Synthesis Tao Jun Lin,Wenqing Wang,Yujiao Shi,Akhil Perincherry,Ankit Vora,Hongdong Li
AbstractThis paper presents a novel approach for cross-view synthesis aimed at generating plausible ground-level images from corresponding satellite imagery or vice versa. We refer to these tasks as satellite-to-ground (Sat2Grd) and ground-to-satellite (Grd2Sat) synthesis, respectively. Unlike previous works that typically focus on one-to-one generation, producing a single output image from a single input image, our approach acknowledges the inherent one-to-many nature of the problem. This recognition stems from the challenges posed by differences in illumination, weather conditions, and occlusions between the two views. To effectively model this uncertainty, we leverage recent advancements in diffusion models. Specifically, we exploit random Gaussian noise to represent the diverse possibilities learnt from the target view data. We introduce a Geometry-guided Cross-view Condition (GCC) strategy to establish explicit geometric correspondences between satellite and street-view features. This enables us to resolve the geometry ambiguity introduced by camera pose between image pairs, boosting the performance of cross-view image synthesis. Through extensive quantitative and qualitative analyses on three benchmark cross-view datasets, we demonstrate the superiority of our proposed geometry-guided cross-view condition over baseline methods, including recent state-of-the-art approaches in cross-view image synthesis. Our method generates images of higher quality, fidelity, and diversity than other state-of-the-art approaches.
December 2024. https://arxiv.org/abs/2412.03315
890 SparseLGS: Sparse View Language Embedded Gaussian Splatting Jun Hu,Zhang Chen,Zhong Li,Yi Xu,Juyong Zhang
AbstractRecently, several studies have combined Gaussian Splatting to obtain scene representations with language embeddings for open-vocabulary 3D scene understanding. While these methods perform well, they essentially require very dense multi-view inputs, limiting their applicability in real-world scenarios. In this work, we propose SparseLGS to address the challenge of 3D scene understanding with pose-free and sparse view input images. Our method leverages a learning-based dense stereo model to handle pose-free and sparse inputs, and a three-step region matching approach to address the multi-view semantic inconsistency problem, which is especially important for sparse inputs. Different from directly learning high-dimensional CLIP features, we extract low-dimensional information and build bijections to avoid excessive learning and storage costs. We introduce a reconstruction loss during semantic training to improve Gaussian positions and shapes. To the best of our knowledge, we are the first to address the 3D semantic field problem with sparse pose-free inputs. Experimental results show that SparseLGS achieves comparable quality when reconstructing semantic fields with fewer inputs (3-4 views) compared to previous SOTA methods with dense input. Besides, when using the same sparse input, SparseLGS leads significantly in quality and heavily improves the computation speed (5$\times$speedup). Project page: https://ustc3dv.github.io/SparseLGS
December 2024. https://arxiv.org/abs/2412.02245
889 NeRF and Gaussian Splatting SLAM in the Wild Fabian Schmidt,Markus Enzweiler,Abhinav Valada
AbstractNavigating outdoor environments with visual Simultaneous Localization and Mapping (SLAM) systems poses significant challenges due to dynamic scenes, lighting variations, and seasonal changes, requiring robust solutions. While traditional SLAM methods struggle with adaptability, deep learning-based approaches and emerging neural radiance fields as well as Gaussian Splatting-based SLAM methods, offer promising alternatives. However, these methods have primarily been evaluated in controlled indoor environments with stable conditions, leaving a gap in understanding their performance in unstructured and variable outdoor settings. This study addresses this gap by evaluating these methods in natural outdoor environments, focusing on camera tracking accuracy, robustness to environmental factors, and computational efficiency, highlighting distinct trade-offs. Extensive evaluations demonstrate that neural SLAM methods achieve superior robustness, particularly under challenging conditions such as low light, but at a high computational cost. At the same time, traditional methods perform the best across seasons but are highly sensitive to variations in lighting conditions. The code of the benchmark is publicly available at https://github.com/iis-esslingen/nerf-3dgs-benchmark.
December 2024. https://arxiv.org/abs/2412.03263
888 Splats in Splats: Embedding Invisible 3D Watermark within Gaussian Splatting Yijia Guo,Wenkai Huang,Yang Li,Gaolei Li,Hang Zhang,Liwen Hu,Jianhua Li,Tiejun Huang,Lei Ma
Abstract3D Gaussian splatting (3DGS) has demonstrated impressive 3D reconstruction performance with explicit scene representations. Given the widespread application of 3DGS in 3D reconstruction and generation tasks, there is an urgent need to protect the copyright of 3DGS assets. However, existing copyright protection techniques for 3DGS overlook the usability of 3D assets, posing challenges for practical deployment. Here we describe WaterGS, the first 3DGS watermarking framework that embeds 3D content in 3DGS itself without modifying any attributes of the vanilla 3DGS. To achieve this, we take a deep insight into spherical harmonics (SH) and devise an importance-graded SH coefficient encryption strategy to embed the hidden SH coefficients. Furthermore, we employ a convolutional autoencoder to establish a mapping between the original Gaussian primitives' opacity and the hidden Gaussian primitives' opacity. Extensive experiments indicate that WaterGS significantly outperforms existing 3D steganography techniques, with 5.31% higher scene fidelity and 3X faster rendering speed, while ensuring security, robustness, and user experience. Codes and data will be released at https://water-gs.github.io.
December 2024. https://arxiv.org/abs/2412.03121
887 RoDyGS: Robust Dynamic Gaussian Splatting for Casual Videos Yoonwoo Jeong,Junmyeong Lee,Hoseung Choi,Minsu Cho
AbstractDynamic view synthesis (DVS) has advanced remarkably in recent years, achieving high-fidelity rendering while reducing computational costs. Despite the progress, optimizing dynamic neural fields from casual videos remains challenging, as these videos do not provide direct 3D information, such as camera trajectories or the underlying scene geometry. In this work, we present RoDyGS, an optimization pipeline for dynamic Gaussian Splatting from casual videos. It effectively learns motion and underlying geometry of scenes by separating dynamic and static primitives, and ensures that the learned motion and geometry are physically plausible by incorporating motion and geometric regularization terms. We also introduce a comprehensive benchmark, Kubric-MRig, that provides extensive camera and object motion along with simultaneous multi-view captures, features that are absent in previous benchmarks. Experimental results demonstrate that the proposed method significantly outperforms previous pose-free dynamic neural fields and achieves competitive rendering quality compared to existing pose-free static neural fields. The code and data are publicly available at https://rodygs.github.io/.
December 2024. https://arxiv.org/abs/2412.03077
886 GVKF: Gaussian Voxel Kernel Functions for Highly Efficient Surface Reconstruction in Open Scenes Gaochao Song,Chong Cheng,Hao Wang
AbstractIn this paper we present a novel method for efficient and effective 3D surface reconstruction in open scenes. Existing Neural Radiance Fields (NeRF) based works typically require extensive training and rendering time due to the adopted implicit representations. In contrast, 3D Gaussian splatting (3DGS) uses an explicit and discrete representation, hence the reconstructed surface is built by the huge number of Gaussian primitives, which leads to excessive memory consumption and rough surface details in sparse Gaussian areas. To address these issues, we propose Gaussian Voxel Kernel Functions (GVKF), which establish a continuous scene representation based on discrete 3DGS through kernel regression. The GVKF integrates fast 3DGS rasterization and highly effective scene implicit representations, achieving high-fidelity open scene surface reconstruction. Experiments on challenging scene datasets demonstrate the efficiency and effectiveness of our proposed GVKF, featuring with high reconstruction quality, real-time rendering speed, significant savings in storage and training memory consumption.
November 2024. https://arxiv.org/abs/2411.01853
885 RGBDS-SLAM: A RGB-D Semantic Dense SLAM Based on 3D Multi Level Pyramid Gaussian Splatting Zhenzhong Cao,Chenyang Zhao,Qianyi Zhang,Jinzheng Guang,Yinuo Song Jingtai Liu
AbstractHigh-quality reconstruction is crucial for dense SLAM. Recent popular approaches utilize 3D Gaussian Splatting (3D GS) techniques for RGB, depth, and semantic reconstruction of scenes. However, these methods often overlook issues of detail and consistency in different parts of the scene. To address this, we propose RGBDS-SLAM, a RGB-D semantic dense SLAM system based on 3D multi-level pyramid gaussian splatting, which enables high-quality dense reconstruction of scene RGB, depth, and semantics.In this system, we introduce a 3D multi-level pyramid gaussian splatting method that restores scene details by extracting multi-level image pyramids for gaussian splatting training, ensuring consistency in RGB, depth, and semantic reconstructions. Additionally, we design a tightly-coupled multi-features reconstruction optimization mechanism, allowing the reconstruction accuracy of RGB, depth, and semantic maps to mutually enhance each other during the rendering optimization process. Extensive quantitative, qualitative, and ablation experiments on the Replica and ScanNet public datasets demonstrate that our proposed method outperforms current state-of-the-art methods. The open-source code will be available at: https://github.com/zhenzhongcao/RGBDS-SLAM.
December 2024. https://arxiv.org/abs/2412.01217
884 Gaussian Splatting Under Attack: Investigating Adversarial Noise in 3D Objects Abdurrahman Zeybey,Mehmet Ergezer,Tommy Nguyen
Abstract3D Gaussian Splatting has advanced radiance field reconstruction, enabling high-quality view synthesis and fast rendering in 3D modeling. While adversarial attacks on object detection models are well-studied for 2D images, their impact on 3D models remains underexplored. This work introduces the Masked Iterative Fast Gradient Sign Method (M-IFGSM), designed to generate adversarial noise targeting the CLIP vision-language model. M-IFGSM specifically alters the object of interest by focusing perturbations on masked regions, degrading the performance of CLIP's zero-shot object detection capability when applied to 3D models. Using eight objects from the Common Objects 3D (CO3D) dataset, we demonstrate that our method effectively reduces the accuracy and confidence of the model, with adversarial noise being nearly imperceptible to human observers. The top-1 accuracy in original model renders drops from 95.4\% to 12.5\% for train images and from 91.2\% to 35.4\% for test images, with confidence levels reflecting this shift from true classification to misclassification, underscoring the risks of adversarial attacks on 3D models in applications such as autonomous driving, robotics, and surveillance. The significance of this research lies in its potential to expose vulnerabilities in modern 3D vision models, including radiance fields, prompting the development of more robust defenses and security measures in critical real-world applications.
December 2024. https://arxiv.org/abs/2412.02803
883 AniGS: Animatable Gaussian Avatar from a Single Image with Inconsistent Gaussian Reconstruction Lingteng Qiu,Shenhao Zhu,Qi Zuo,Xiaodong Gu,Yuan Dong,Junfei Zhang,Chao Xu,Zhe Li,Weihao Yuan,Liefeng Bo,Guanying Chen,Zilong Dong
AbstractGenerating animatable human avatars from a single image is essential for various digital human modeling applications. Existing 3D reconstruction methods often struggle to capture fine details in animatable models, while generative approaches for controllable animation, though avoiding explicit 3D modeling, suffer from viewpoint inconsistencies in extreme poses and computational inefficiencies. In this paper, we address these challenges by leveraging the power of generative models to produce detailed multi-view canonical pose images, which help resolve ambiguities in animatable human reconstruction. We then propose a robust method for 3D reconstruction of inconsistent images, enabling real-time rendering during inference. Specifically, we adapt a transformer-based video generation model to generate multi-view canonical pose images and normal maps, pretraining on a large-scale video dataset to improve generalization. To handle view inconsistencies, we recast the reconstruction problem as a 4D task and introduce an efficient 3D modeling approach using 4D Gaussian Splatting. Experiments demonstrate that our method achieves photorealistic, real-time animation of 3D human avatars from in-the-wild images, showcasing its effectiveness and generalization capability.
December 2024. https://arxiv.org/abs/2412.02684
882 Diffusion Models with Anisotropic Gaussian Splatting for Image Inpainting Jacob Fein-Ashley,Benjamin Fein-Ashley
AbstractImage inpainting is a fundamental task in computer vision, aiming to restore missing or corrupted regions in images realistically. While recent deep learning approaches have significantly advanced the state-of-the-art, challenges remain in maintaining structural continuity and generating coherent textures, particularly in large missing areas. Diffusion models have shown promise in generating high-fidelity images but often lack the structural guidance necessary for realistic inpainting. We propose a novel inpainting method that combines diffusion models with anisotropic Gaussian splatting to capture both local structures and global context effectively. By modeling missing regions using anisotropic Gaussian functions that adapt to local image gradients, our approach provides structural guidance to the diffusion-based inpainting network. The Gaussian splat maps are integrated into the diffusion process, enhancing the model's ability to generate high-fidelity and structurally coherent inpainting results. Extensive experiments demonstrate that our method outperforms state-of-the-art techniques, producing visually plausible results with enhanced structural integrity and texture realism.
December 2024. https://arxiv.org/abs/2412.01682
881 D-MiSo: Editing Dynamic 3D Scenes using Multi-Gaussians Soup Joanna Waczy\xc5\x84ska,Piotr Borycki,Joanna Kaleta,S\xc5\x82awomir Tadeja,Przemys\xc5\x82aw Spurek
AbstractOver the past years, we have observed an abundance of approaches for modeling dynamic 3D scenes using Gaussian Splatting (GS). Such solutions use GS to represent the scene's structure and the neural network to model dynamics. Such approaches allow fast rendering and extracting each element of such a dynamic scene. However, modifying such objects over time is challenging. SC-GS (Sparse Controlled Gaussian Splatting) enhanced with Deformed Control Points partially solves this issue. However, this approach necessitates selecting elements that need to be kept fixed, as well as centroids that should be adjusted throughout editing. Moreover, this task poses additional difficulties regarding the re-productivity of such editing. To address this, we propose Dynamic Multi-Gaussian Soup (D-MiSo), which allows us to model the mesh-inspired representation of dynamic GS. Additionally, we propose a strategy of linking parameterized Gaussian splats, forming a Triangle Soup with the estimated mesh. Consequently, we can separately construct new trajectories for the 3D objects composing the scene. Thus, we can make the scene's dynamic editable over time or while maintaining partial dynamics.
May 2024. https://arxiv.org/abs/2405.14276
880 RelayGS: Reconstructing Dynamic Scenes with Large-Scale and Complex Motions via Relay Gaussians Qiankun Gao,Yanmin Wu,Chengxiang Wen,Jiarui Meng,Luyang Tang,Jie Chen,Ronggang Wang,Jian Zhang
AbstractReconstructing dynamic scenes with large-scale and complex motions remains a significant challenge. Recent techniques like Neural Radiance Fields and 3D Gaussian Splatting (3DGS) have shown promise but still struggle with scenes involving substantial movement. This paper proposes RelayGS, a novel method based on 3DGS, specifically designed to represent and reconstruct highly dynamic scenes. Our RelayGS learns a complete 4D representation with canonical 3D Gaussians and a compact motion field, consisting of three stages. First, we learn a fundamental 3DGS from all frames, ignoring temporal scene variations, and use a learnable mask to separate the highly dynamic foreground from the minimally moving background. Second, we replicate multiple copies of the decoupled foreground Gaussians from the first stage, each corresponding to a temporal segment, and optimize them using pseudo-views constructed from multiple frames within each segment. These Gaussians, termed Relay Gaussians, act as explicit relay nodes, simplifying and breaking down large-scale motion trajectories into smaller, manageable segments. Finally, we jointly learn the scene's temporal motion and refine the canonical Gaussians learned from the first two stages. We conduct thorough experiments on two dynamic scene datasets featuring large and complex motions, where our RelayGS outperforms state-of-the-arts by more than 1 dB in PSNR, and successfully reconstructs real-world basketball game scenes in a much more complete and coherent manner, whereas previous methods usually struggle to capture the complex motion of players. Code will be publicly available at https://github.com/gqk/RelayGS
December 2024. https://arxiv.org/abs/2412.02493
879 Spiking GS: Towards High-Accuracy and Low-Cost Surface Reconstruction via Spiking Neuron-based Gaussian Splatting Weixing Zhang,Zongrui Li,De Ma,Huajin Tang,Xudong Jiang,Qian Zheng,Gang Pan
Abstract3D Gaussian Splatting is capable of reconstructing 3D scenes in minutes. Despite recent advances in improving surface reconstruction accuracy, the reconstructed results still exhibit bias and suffer from inefficiency in storage and training. This paper provides a different observation on the cause of the inefficiency and the reconstruction bias, which is attributed to the integration of the low-opacity parts (LOPs) of the generated Gaussians. We show that LOPs consist of Gaussians with overall low-opacity (LOGs) and the low-opacity tails (LOTs) of Gaussians. We propose Spiking GS to reduce such two types of LOPs by integrating spiking neurons into the Gaussian Splatting pipeline. Specifically, we introduce global and local full-precision integrate-and-fire spiking neurons to the opacity and representation function of flattened 3D Gaussians, respectively. Furthermore, we enhance the density control strategy with spiking neurons' thresholds and a new criterion on the scale of Gaussians. Our method can represent more accurate reconstructed surfaces at a lower cost. The supplementary material and code are available at https://github.com/zju-bmi-lab/SpikingGS.
October 2024. https://arxiv.org/abs/2410.07266
878 TimeWalker: Personalized Neural Space for Lifelong Head Avatars Dongwei Pan,Yang Li,Hongsheng Li,Kwan-Yee Lin
AbstractWe present TimeWalker, a novel framework that models realistic, full-scale 3D head avatars of a person on lifelong scale. Unlike current human head avatar pipelines that capture identity at the momentary level(e.g., instant photography or short videos), TimeWalker constructs a person's comprehensive identity from unstructured data collection over his/her various life stages, offering a paradigm to achieve full reconstruction and animation of that person at different moments of life. At the heart of TimeWalker's success is a novel neural parametric model that learns personalized representation with the disentanglement of shape, expression, and appearance across ages. Central to our methodology are the concepts of two aspects: (1) We track back to the principle of modeling a person's identity in an additive combination of average head representation in the canonical space, and moment-specific head attribute representations driven from a set of neural head basis. To learn the set of head basis that could represent the comprehensive head variations in a compact manner, we propose a Dynamic Neural Basis-Blending Module (Dynamo). It dynamically adjusts the number and blend weights of neural head bases, according to both shared and specific traits of the target person over ages. (2) Dynamic 2D Gaussian Splatting (DNA-2DGS), an extension of Gaussian splatting representation, to model head motion deformations like facial expressions without losing the realism of rendering and reconstruction. DNA-2DGS includes a set of controllable 2D oriented planar Gaussian disks that utilize the priors from parametric model, and move/rotate with the change of expression. Through extensive experimental evaluations, we show TimeWalker's ability to reconstruct and animate avatars across decoupled dimensions with realistic rendering effects, demonstrating a way to achieve personalized 'time traveling' in a breeze.
December 2024. https://arxiv.org/abs/2412.02421
877 GSGTrack: Gaussian Splatting-Guided Object Pose Tracking from RGB Videos Zhiyuan Chen,Fan Lu,Guo Yu,Bin Li,Sanqing Qu,Yuan Huang,Changhong Fu,Guang Chen
AbstractTracking the 6DoF pose of unknown objects in monocular RGB video sequences is crucial for robotic manipulation. However, existing approaches typically rely on accurate depth information, which is non-trivial to obtain in real-world scenarios. Although depth estimation algorithms can be employed, geometric inaccuracy can lead to failures in RGBD-based pose tracking methods. To address this challenge, we introduce GSGTrack, a novel RGB-based pose tracking framework that jointly optimizes geometry and pose. Specifically, we adopt 3D Gaussian Splatting to create an optimizable 3D representation, which is learned simultaneously with a graph-based geometry optimization to capture the object's appearance features and refine its geometry. However, the joint optimization process is susceptible to perturbations from noisy pose and geometry data. Thus, we propose an object silhouette loss to address the issue of pixel-wise loss being overly sensitive to pose noise during tracking. To mitigate the geometric ambiguities caused by inaccurate depth information, we propose a geometry-consistent image pair selection strategy, which filters out low-confidence pairs and ensures robust geometric optimization. Extensive experiments on the OnePose and HO3D datasets demonstrate the effectiveness of GSGTrack in both 6DoF pose tracking and object reconstruction.
December 2024. https://arxiv.org/abs/2412.02267
876 Multi-robot autonomous 3D reconstruction using Gaussian splatting with Semantic guidance Jing Zeng,Qi Ye,Tianle Liu,Yang Xu,Jin Li,Jinming Xu,Liang Li,Jiming Chen
AbstractImplicit neural representations and 3D Gaussian splatting (3DGS) have shown great potential for scene reconstruction. Recent studies have expanded their applications in autonomous reconstruction through task assignment methods. However, these methods are mainly limited to single robot, and rapid reconstruction of large-scale scenes remains challenging. Additionally, task-driven planning based on surface uncertainty is prone to being trapped in local optima. To this end, we propose the first 3DGS-based centralized multi-robot autonomous 3D reconstruction framework. To further reduce time cost of task generation and improve reconstruction quality, we integrate online open-vocabulary semantic segmentation with surface uncertainty of 3DGS, focusing view sampling on regions with high instance uncertainty. Finally, we develop a multi-robot collaboration strategy with mode and task assignments improving reconstruction quality while ensuring planning efficiency. Our method demonstrates the highest reconstruction quality among all planning methods and superior planning efficiency compared to existing multi-robot methods. We deploy our method on multiple robots, and results show that it can effectively plan view paths and reconstruct scenes with high quality.
December 2024. https://arxiv.org/abs/2412.02249
875 How to Use Diffusion Priors under Sparse Views? Qisen Wang,Yifan Zhao,Jiawei Ma,Jia Li
AbstractNovel view synthesis under sparse views has been a long-term important challenge in 3D reconstruction. Existing works mainly rely on introducing external semantic or depth priors to supervise the optimization of 3D representations. However, the diffusion model, as an external prior that can directly provide visual supervision, has always underperformed in sparse-view 3D reconstruction using Score Distillation Sampling (SDS) due to the low information entropy of sparse views compared to text, leading to optimization challenges caused by mode deviation. To this end, we present a thorough analysis of SDS from the mode-seeking perspective and propose Inline Prior Guided Score Matching (IPSM), which leverages visual inline priors provided by pose relationships between viewpoints to rectify the rendered image distribution and decomposes the original optimization objective of SDS, thereby offering effective diffusion visual guidance without any fine-tuning or pre-training. Furthermore, we propose the IPSM-Gaussian pipeline, which adopts 3D Gaussian Splatting as the backbone and supplements depth and geometry consistency regularization based on IPSM to further improve inline priors and rectified distribution. Experimental results on different public datasets show that our method achieves state-of-the-art reconstruction quality. The code is released at https://github.com/iCVTEAM/IPSM.
December 2024. https://arxiv.org/abs/2412.02225
874 GFreeDet: Exploiting Gaussian Splatting and Foundation Models for Model-free Unseen Object Detection in the BOP Challenge 2024 Xingyu Liu,Yingyue Li,Chengxi Li,Gu Wang,Chenyangguang Zhang,Ziqin Huang,Xiangyang Ji
AbstractIn this report, we provide the technical details of the submitted method GFreeDet, which exploits Gaussian splatting and vision Foundation models for the model-free unseen object Detection track in the BOP 2024 Challenge.
December 2024. https://arxiv.org/abs/2412.01552
873 SparseGrasp: Robotic Grasping via 3D Semantic Gaussian Splatting from Sparse Multi-View RGB Images Junqiu Yu,Xinlin Ren,Yongchong Gu,Haitao Lin,Tianyu Wang,Yi Zhu,Hang Xu,Yu-Gang Jiang,Xiangyang Xue,Yanwei Fu
AbstractLanguage-guided robotic grasping is a rapidly advancing field where robots are instructed using human language to grasp specific objects. However, existing methods often depend on dense camera views and struggle to quickly update scenes, limiting their effectiveness in changeable environments. In contrast, we propose SparseGrasp, a novel open-vocabulary robotic grasping system that operates efficiently with sparse-view RGB images and handles scene updates fastly. Our system builds upon and significantly enhances existing computer vision modules in robotic learning. Specifically, SparseGrasp utilizes DUSt3R to generate a dense point cloud as the initialization for 3D Gaussian Splatting (3DGS), maintaining high fidelity even under sparse supervision. Importantly, SparseGrasp incorporates semantic awareness from recent vision foundation models. To further improve processing efficiency, we repurpose Principal Component Analysis (PCA) to compress features from 2D models. Additionally, we introduce a novel render-and-compare strategy that ensures rapid scene updates, enabling multi-turn grasping in changeable environments. Experimental results show that SparseGrasp significantly outperforms state-of-the-art methods in terms of both speed and adaptability, providing a robust solution for multi-turn grasping in changeable environment.
December 2024. https://arxiv.org/abs/2412.02140
872 Gaussian Object Carver: Object-Compositional Gaussian Splatting with surfaces completion Liu Liu,Xinjie Wang,Jiaxiong Qiu,Tianwei Lin,Xiaolin Zhou,Zhizhong Su
Abstract3D scene reconstruction is a foundational problem in computer vision. Despite recent advancements in Neural Implicit Representations (NIR), existing methods often lack editability and compositional flexibility, limiting their use in scenarios requiring high interactivity and object-level manipulation. In this paper, we introduce the Gaussian Object Carver (GOC), a novel, efficient, and scalable framework for object-compositional 3D scene reconstruction. GOC leverages 3D Gaussian Splatting (GS), enriched with monocular geometry priors and multi-view geometry regularization, to achieve high-quality and flexible reconstruction. Furthermore, we propose a zero-shot Object Surface Completion (OSC) model, which uses 3D priors from 3d object data to reconstruct unobserved surfaces, ensuring object completeness even in occluded areas. Experimental results demonstrate that GOC improves reconstruction efficiency and geometric fidelity. It holds promise for advancing the practical application of digital twins in embodied AI, AR/VR, and interactive simulation environments.
December 2024. https://arxiv.org/abs/2412.02075
871 GaMeS: Mesh-Based Adapting and Modification of Gaussian Splatting Joanna Waczy\xc5\x84ska,Piotr Borycki,S\xc5\x82awomir Tadeja,Jacek Tabor,Przemys\xc5\x82aw Spurek
AbstractGaussian Splatting (GS) is a novel, state-of-the-art technique for rendering points in a 3D scene by approximating their contribution to image pixels through Gaussian distributions, warranting fast training and real-time rendering. The main drawback of GS is the absence of a well-defined approach for its conditioning due to the necessity of conditioning several hundred thousand Gaussian components. To solve this, we introduce the Gaussian Mesh Splatting (GaMeS) model, which allows modification of Gaussian components in a similar way as meshes. We parameterize each Gaussian component by the vertices of the mesh face. Furthermore, our model needs mesh initialization on input or estimated mesh during training. We also define Gaussian splats solely based on their location on the mesh, allowing for automatic adjustments in position, scale, and rotation during animation. As a result, we obtain a real-time rendering of editable GS.
February 2024. https://arxiv.org/abs/2402.01459
870 Planar Gaussian Splatting Farhad G. Zanjani,Hong Cai,Hanno Ackermann,Leila Mirvakhabova,Fatih Porikli
AbstractThis paper presents Planar Gaussian Splatting (PGS), a novel neural rendering approach to learn the 3D geometry and parse the 3D planes of a scene, directly from multiple RGB images. The PGS leverages Gaussian primitives to model the scene and employ a hierarchical Gaussian mixture approach to group them. Similar Gaussians are progressively merged probabilistically in the tree-structured Gaussian mixtures to identify distinct 3D plane instances and form the overall 3D scene geometry. In order to enable the grouping, the Gaussian primitives contain additional parameters, such as plane descriptors derived by lifting 2D masks from a general 2D segmentation model and surface normals. Experiments show that the proposed PGS achieves state-of-the-art performance in 3D planar reconstruction without requiring either 3D plane labels or depth supervision. In contrast to existing supervised methods that have limited generalizability and struggle under domain shift, PGS maintains its performance across datasets thanks to its neural rendering and scene-specific optimization mechanism, while also being significantly faster than existing optimization-based approaches.
December 2024. https://arxiv.org/abs/2412.01931
869 HDGS: Textured 2D Gaussian Splatting for Enhanced Scene Rendering Yunzhou Song,Heguang Lin,Jiahui Lei,Lingjie Liu,Kostas Daniilidis
AbstractRecent advancements in neural rendering, particularly 2D Gaussian Splatting (2DGS), have shown promising results for jointly reconstructing fine appearance and geometry by leveraging 2D Gaussian surfels. However, current methods face significant challenges when rendering at arbitrary viewpoints, such as anti-aliasing for down-sampled rendering, and texture detail preservation for high-resolution rendering. We proposed a novel method to align the 2D surfels with texture maps and augment it with per-ray depth sorting and fisher-based pruning for rendering consistency and efficiency. With correct order, per-surfel texture maps significantly improve the capabilities to capture fine details. Additionally, to render high-fidelity details in varying viewpoints, we designed a frustum-based sampling method to mitigate the aliasing artifacts. Experimental results on benchmarks and our custom texture-rich dataset demonstrate that our method surpasses existing techniques, particularly in detail preservation and anti-aliasing.
December 2024. https://arxiv.org/abs/2412.01823
868 Occam's LGS: A Simple Approach for Language Gaussian Splatting Jiahuan Cheng,Jan-Nico Zaech,Luc Van Gool,Danda Pani Paudel
AbstractTL;DR: Gaussian Splatting is a widely adopted approach for 3D scene representation that offers efficient, high-quality 3D reconstruction and rendering. A major reason for the success of 3DGS is its simplicity of representing a scene with a set of Gaussians, which makes it easy to interpret and adapt. To enhance scene understanding beyond the visual representation, approaches have been developed that extend 3D Gaussian Splatting with semantic vision-language features, especially allowing for open-set tasks. In this setting, the language features of 3D Gaussian Splatting are often aggregated from multiple 2D views. Existing works address this aggregation problem using cumbersome techniques that lead to high computational cost and training time. In this work, we show that the sophisticated techniques for language-grounded 3D Gaussian Splatting are simply unnecessary. Instead, we apply Occam's razor to the task at hand and perform weighted multi-view feature aggregation using the weights derived from the standard rendering process, followed by a simple heuristic-based noisy Gaussian filtration. Doing so offers us state-of-the-art results with a speed-up of two orders of magnitude. We showcase our results in two commonly used benchmark datasets: LERF and 3D-OVS. Our simple approach allows us to perform reasoning directly in the language features, without any compression whatsoever. Such modeling in turn offers easy scene manipulation, unlike the existing methods -- which we illustrate using an application of object insertion in the scene. Furthermore, we provide a thorough discussion regarding the significance of our contributions within the context of the current literature. Project Page: https://insait-institute.github.io/OccamLGS/
December 2024. https://arxiv.org/abs/2412.01807
867 CTRL-D: Controllable Dynamic 3D Scene Editing with Personalized 2D Diffusion Kai He,Chin-Hsuan Wu,Igor Gilitschenski
AbstractRecent advances in 3D representations, such as Neural Radiance Fields and 3D Gaussian Splatting, have greatly improved realistic scene modeling and novel-view synthesis. However, achieving controllable and consistent editing in dynamic 3D scenes remains a significant challenge. Previous work is largely constrained by its editing backbones, resulting in inconsistent edits and limited controllability. In our work, we introduce a novel framework that first fine-tunes the InstructPix2Pix model, followed by a two-stage optimization of the scene based on deformable 3D Gaussians. Our fine-tuning enables the model to "learn" the editing ability from a single edited reference image, transforming the complex task of dynamic scene editing into a simple 2D image editing process. By directly learning editing regions and styles from the reference, our approach enables consistent and precise local edits without the need for tracking desired editing regions, effectively addressing key challenges in dynamic scene editing. Then, our two-stage optimization progressively edits the trained dynamic scene, using a designed edited image buffer to accelerate convergence and improve temporal consistency. Compared to state-of-the-art methods, our approach offers more flexible and controllable local scene editing, achieving high-quality and consistent results.
December 2024. https://arxiv.org/abs/2412.01792
866 GuardSplat: Efficient and Robust Watermarking for 3D Gaussian Splatting Zixuan Chen,Guangcong Wang,Jiahao Zhu,Jianhuang Lai,Xiaohua Xie
Abstract3D Gaussian Splatting (3DGS) has recently created impressive assets for various applications. However, the copyright of these assets is not well protected as existing watermarking methods are not suited for 3DGS considering security, capacity, and invisibility. Besides, these methods often require hours or even days for optimization, limiting the application scenarios. In this paper, we propose GuardSplat, an innovative and efficient framework that effectively protects the copyright of 3DGS assets. Specifically, 1) We first propose a CLIP-guided Message Decoupling Optimization module for training the message decoder, leveraging CLIP's aligning capability and rich representations to achieve a high extraction accuracy with minimal optimization costs, presenting exceptional capability and efficiency. 2) Then, we propose a Spherical-harmonic-aware (SH-aware) Message Embedding module tailored for 3DGS, which employs a set of SH offsets to seamlessly embed the message into the SH features of each 3D Gaussian while maintaining the original 3D structure. It enables the 3DGS assets to be watermarked with minimal fidelity trade-offs and prevents malicious users from removing the messages from the model files, meeting the demands for invisibility and security. 3) We further propose an Anti-distortion Message Extraction module to improve robustness against various visual distortions. Extensive experiments demonstrate that GuardSplat outperforms the state-of-the-art methods and achieves fast optimization speed.
November 2024. https://arxiv.org/abs/2411.19895
865 Horizon-GS: Unified 3D Gaussian Splatting for Large-Scale Aerial-to-Ground Scenes Lihan Jiang,Kerui Ren,Mulin Yu,Linning Xu,Junting Dong,Tao Lu,Feng Zhao,Dahua Lin,Bo Dai
AbstractSeamless integration of both aerial and street view images remains a significant challenge in neural scene reconstruction and rendering. Existing methods predominantly focus on single domain, limiting their applications in immersive environments, which demand extensive free view exploration with large view changes both horizontally and vertically. We introduce Horizon-GS, a novel approach built upon Gaussian Splatting techniques, tackles the unified reconstruction and rendering for aerial and street views. Our method addresses the key challenges of combining these perspectives with a new training strategy, overcoming viewpoint discrepancies to generate high-fidelity scenes. We also curate a high-quality aerial-to-ground views dataset encompassing both synthetic and real-world scene to advance further research. Experiments across diverse urban scene datasets confirm the effectiveness of our method.
December 2024. https://arxiv.org/abs/2412.01745
864 HUGSIM: A Real-Time, Photo-Realistic and Closed-Loop Simulator for Autonomous Driving Hongyu Zhou,Longzhong Lin,Jiabao Wang,Yichong Lu,Dongfeng Bai,Bingbing Liu,Yue Wang,Andreas Geiger,Yiyi Liao
AbstractIn the past few decades, autonomous driving algorithms have made significant progress in perception, planning, and control. However, evaluating individual components does not fully reflect the performance of entire systems, highlighting the need for more holistic assessment methods. This motivates the development of HUGSIM, a closed-loop, photo-realistic, and real-time simulator for evaluating autonomous driving algorithms. We achieve this by lifting captured 2D RGB images into the 3D space via 3D Gaussian Splatting, improving the rendering quality for closed-loop scenarios, and building the closed-loop environment. In terms of rendering, We tackle challenges of novel view synthesis in closed-loop scenarios, including viewpoint extrapolation and 360-degree vehicle rendering. Beyond novel view synthesis, HUGSIM further enables the full closed simulation loop, dynamically updating the ego and actor states and observations based on control commands. Moreover, HUGSIM offers a comprehensive benchmark across more than 70 sequences from KITTI-360, Waymo, nuScenes, and PandaSet, along with over 400 varying scenarios, providing a fair and realistic evaluation platform for existing autonomous driving algorithms. HUGSIM not only serves as an intuitive evaluation benchmark but also unlocks the potential for fine-tuning autonomous driving algorithms in a photorealistic closed-loop setting.
December 2024. https://arxiv.org/abs/2412.01718
863 Driving Scene Synthesis on Free-form Trajectories with Generative Prior Zeyu Yang,Zijie Pan,Yuankun Yang,Xiatian Zhu,Li Zhang
AbstractDriving scene synthesis along free-form trajectories is essential for driving simulations to enable closed-loop evaluation of end-to-end driving policies. While existing methods excel at novel view synthesis on recorded trajectories, they face challenges with novel trajectories due to limited views of driving videos and the vastness of driving environments. To tackle this challenge, we propose a novel free-form driving view synthesis approach, dubbed DriveX, by leveraging video generative prior to optimize a 3D model across a variety of trajectories. Concretely, we crafted an inverse problem that enables a video diffusion model to be utilized as a prior for many-trajectory optimization of a parametric 3D model (e.g., Gaussian splatting). To seamlessly use the generative prior, we iteratively conduct this process during optimization. Our resulting model can produce high-fidelity virtual driving environments outside the recorded trajectory, enabling free-form trajectory driving simulation. Beyond real driving scenes, DriveX can also be utilized to simulate virtual driving worlds from AI-generated videos.
December 2024. https://arxiv.org/abs/2412.01717
862 Deepfake for the Good: Generating Avatars through Face-Swapping with Implicit Deepfake Generation Georgii Stanishevskii,Jakub Steczkiewicz,Tomasz Szczepanik,S\xc5\x82awomir Tadeja,Jacek Tabor,Przemys\xc5\x82aw Spurek
AbstractNumerous emerging deep-learning techniques have had a substantial impact on computer graphics. Among the most promising breakthroughs are the rise of Neural Radiance Fields (NeRFs) and Gaussian Splatting (GS). NeRFs encode the object's shape and color in neural network weights using a handful of images with known camera positions to generate novel views. In contrast, GS provides accelerated training and inference without a decrease in rendering quality by encoding the object's characteristics in a collection of Gaussian distributions. These two techniques have found many use cases in spatial computing and other domains. On the other hand, the emergence of deepfake methods has sparked considerable controversy. Deepfakes refers to artificial intelligence-generated videos that closely mimic authentic footage. Using generative models, they can modify facial features, enabling the creation of altered identities or expressions that exhibit a remarkably realistic appearance to a real person. Despite these controversies, deepfake can offer a next-generation solution for avatar creation and gaming when of desirable quality. To that end, we show how to combine all these emerging technologies to obtain a more plausible outcome. Our ImplicitDeepfake uses the classical deepfake algorithm to modify all training images separately and then train NeRF and GS on modified faces. Such simple strategies can produce plausible 3D deepfake-based avatars.
February 2024. https://arxiv.org/abs/2402.06390
861 3DSceneEditor: Controllable 3D Scene Editing with Gaussian Splatting Ziyang Yan,Lei Li,Yihua Shao,Siyu Chen,Wuzong Kai,Jenq-Neng Hwang,Hao Zhao,Fabio Remondino
AbstractThe creation of 3D scenes has traditionally been both labor-intensive and costly, requiring designers to meticulously configure 3D assets and environments. Recent advancements in generative AI, including text-to-3D and image-to-3D methods, have dramatically reduced the complexity and cost of this process. However, current techniques for editing complex 3D scenes continue to rely on generally interactive multi-step, 2D-to-3D projection methods and diffusion-based techniques, which often lack precision in control and hamper real-time performance. In this work, we propose 3DSceneEditor, a fully 3D-based paradigm for real-time, precise editing of intricate 3D scenes using Gaussian Splatting. Unlike conventional methods, 3DSceneEditor operates through a streamlined 3D pipeline, enabling direct manipulation of Gaussians for efficient, high-quality edits based on input prompts.The proposed framework (i) integrates a pre-trained instance segmentation model for semantic labeling; (ii) employs a zero-shot grounding approach with CLIP to align target objects with user prompts; and (iii) applies scene modifications, such as object addition, repositioning, recoloring, replacing, and deletion directly on Gaussians. Extensive experimental results show that 3DSceneEditor achieves superior editing precision and speed with respect to current SOTA 3D scene editing approaches, establishing a new benchmark for efficient and interactive 3D scene customization.
December 2024. https://arxiv.org/abs/2412.01583
860 SfM-Free 3D Gaussian Splatting via Hierarchical Training Bo Ji,Angela Yao
AbstractStandard 3D Gaussian Splatting (3DGS) relies on known or pre-computed camera poses and a sparse point cloud, obtained from structure-from-motion (SfM) preprocessing, to initialize and grow 3D Gaussians. We propose a novel SfM-Free 3DGS (SFGS) method for video input, eliminating the need for known camera poses and SfM preprocessing. Our approach introduces a hierarchical training strategy that trains and merges multiple 3D Gaussian representations -- each optimized for specific scene regions -- into a single, unified 3DGS model representing the entire scene. To compensate for large camera motions, we leverage video frame interpolation models. Additionally, we incorporate multi-source supervision to reduce overfitting and enhance representation. Experimental results reveal that our approach significantly surpasses state-of-the-art SfM-free novel view synthesis methods. On the Tanks and Temples dataset, we improve PSNR by an average of 2.25dB, with a maximum gain of 3.72dB in the best scene. On the CO3D-V2 dataset, we achieve an average PSNR boost of 1.74dB, with a top gain of 3.90dB. The code is available at https://github.com/jibo27/3DGS_Hierarchical_Training.
December 2024. https://arxiv.org/abs/2412.01553
859 6DOPE-GS: Online 6D Object Pose Estimation using Gaussian Splatting Yufeng Jin,Vignesh Prasad,Snehal Jauhri,Mathias Franzius,Georgia Chalvatzaki
AbstractEfficient and accurate object pose estimation is an essential component for modern vision systems in many applications such as Augmented Reality, autonomous driving, and robotics. While research in model-based 6D object pose estimation has delivered promising results, model-free methods are hindered by the high computational load in rendering and inferring consistent poses of arbitrary objects in a live RGB-D video stream. To address this issue, we present 6DOPE-GS, a novel method for online 6D object pose estimation \& tracking with a single RGB-D camera by effectively leveraging advances in Gaussian Splatting. Thanks to the fast differentiable rendering capabilities of Gaussian Splatting, 6DOPE-GS can simultaneously optimize for 6D object poses and 3D object reconstruction. To achieve the necessary efficiency and accuracy for live tracking, our method uses incremental 2D Gaussian Splatting with an intelligent dynamic keyframe selection procedure to achieve high spatial object coverage and prevent erroneous pose updates. We also propose an opacity statistic-based pruning mechanism for adaptive Gaussian density control, to ensure training stability and efficiency. We evaluate our method on the HO3D and YCBInEOAT datasets and show that 6DOPE-GS matches the performance of state-of-the-art baselines for model-free simultaneous 6D pose tracking and reconstruction while providing a 5$\times$ speedup. We also demonstrate the method's suitability for live, dynamic object tracking and reconstruction in a real-world setting.
December 2024. https://arxiv.org/abs/2412.01543
858 Beyond Gaussians: Fast and High-Fidelity 3D Splatting with Linear Kernels Haodong Chen,Runnan Chen,Qiang Qu,Zhaoqing Wang,Tongliang Liu,Xiaoming Chen,Yuk Ying Chung
AbstractRecent advancements in 3D Gaussian Splatting (3DGS) have substantially improved novel view synthesis, enabling high-quality reconstruction and real-time rendering. However, blurring artifacts, such as floating primitives and over-reconstruction, remain challenging. Current methods address these issues by refining scene structure, enhancing geometric representations, addressing blur in training images, improving rendering consistency, and optimizing density control, yet the role of kernel design remains underexplored. We identify the soft boundaries of Gaussian ellipsoids as one of the causes of these artifacts, limiting detail capture in high-frequency regions. To bridge this gap, we introduce 3D Linear Splatting (3DLS), which replaces Gaussian kernels with linear kernels to achieve sharper and more precise results, particularly in high-frequency regions. Through evaluations on three datasets, 3DLS demonstrates state-of-the-art fidelity and accuracy, along with a 30% FPS improvement over baseline 3DGS. The implementation will be made publicly available upon acceptance.
November 2024. https://arxiv.org/abs/2411.12440
857 ULSR-GS: Ultra Large-scale Surface Reconstruction Gaussian Splatting with Multi-View Geometric Consistency Zhuoxiao Li,Shanliang Yao,Qizhong Gao,Angel F. Garcia-Fernandez,Yong Yue,Xiaohui Zhu
AbstractWhile Gaussian Splatting (GS) demonstrates efficient and high-quality scene rendering and small area surface extraction ability, it falls short in handling large-scale aerial image surface extraction tasks. To overcome this, we present ULSR-GS, a framework dedicated to high-fidelity surface extraction in ultra-large-scale scenes, addressing the limitations of existing GS-based mesh extraction methods. Specifically, we propose a point-to-photo partitioning approach combined with a multi-view optimal view matching principle to select the best training images for each sub-region. Additionally, during training, ULSR-GS employs a densification strategy based on multi-view geometric consistency to enhance surface extraction details. Experimental results demonstrate that ULSR-GS outperforms other state-of-the-art GS-based works on large-scale aerial photogrammetry benchmark datasets, significantly improving surface extraction accuracy in complex urban environments. Project page: https://ulsrgs.github.io.
December 2024. https://arxiv.org/abs/2412.01402
856 GausSurf: Geometry-Guided 3D Gaussian Splatting for Surface Reconstruction Jiepeng Wang,Yuan Liu,Peng Wang,Cheng Lin,Junhui Hou,Xin Li,Taku Komura,Wenping Wang
Abstract3D Gaussian Splatting has achieved impressive performance in novel view synthesis with real-time rendering capabilities. However, reconstructing high-quality surfaces with fine details using 3D Gaussians remains a challenging task. In this work, we introduce GausSurf, a novel approach to high-quality surface reconstruction by employing geometry guidance from multi-view consistency in texture-rich areas and normal priors in texture-less areas of a scene. We observe that a scene can be mainly divided into two primary regions: 1) texture-rich and 2) texture-less areas. To enforce multi-view consistency at texture-rich areas, we enhance the reconstruction quality by incorporating a traditional patch-match based Multi-View Stereo (MVS) approach to guide the geometry optimization in an iterative scheme. This scheme allows for mutual reinforcement between the optimization of Gaussians and patch-match refinement, which significantly improves the reconstruction results and accelerates the training process. Meanwhile, for the texture-less areas, we leverage normal priors from a pre-trained normal estimation model to guide optimization. Extensive experiments on the DTU and Tanks and Temples datasets demonstrate that our method surpasses state-of-the-art methods in terms of reconstruction quality and computation time.
November 2024. https://arxiv.org/abs/2411.19454
855 LeanGaussian: Breaking Pixel or Point Cloud Correspondence in Modeling 3D Gaussians Jiamin Wu,Kenkun Liu,Han Gao,Xiaoke Jiang,Lei Zhang
AbstractRencently, Gaussian splatting has demonstrated significant success in novel view synthesis. Current methods often regress Gaussians with pixel or point cloud correspondence, linking each Gaussian with a pixel or a 3D point. This leads to the redundancy of Gaussians being used to overfit the correspondence rather than the objects represented by the 3D Gaussians themselves, consequently wasting resources and lacking accurate geometries or textures. In this paper, we introduce LeanGaussian, a novel approach that treats each query in deformable Transformer as one 3D Gaussian ellipsoid, breaking the pixel or point cloud correspondence constraints. We leverage deformable decoder to iteratively refine the Gaussians layer-by-layer with the image features as keys and values. Notably, the center of each 3D Gaussian is defined as 3D reference points, which are then projected onto the image for deformable attention in 2D space. On both the ShapeNet SRN dataset (category level) and the Google Scanned Objects dataset (open-category level, trained with the Objaverse dataset), our approach, outperforms prior methods by approximately 6.1\%, achieving a PSNR of 25.44 and 22.36, respectively. Additionally, our method achieves a 3D reconstruction speed of 7.2 FPS and rendering speed 500 FPS. The code will be released at https://github.com/jwubz123/DIG3D.
April 2024. https://arxiv.org/abs/2404.16323
854 Ref-GS: Directional Factorization for 2D Gaussian Splatting Youjia Zhang,Anpei Chen,Yumin Wan,Zikai Song,Junqing Yu,Yawei Luo,Wei Yang
AbstractIn this paper, we introduce Ref-GS, a novel approach for directional light factorization in 2D Gaussian splatting, which enables photorealistic view-dependent appearance rendering and precise geometry recovery. Ref-GS builds upon the deferred rendering of Gaussian splatting and applies directional encoding to the deferred-rendered surface, effectively reducing the ambiguity between orientation and viewing angle. Next, we introduce a spherical Mip-grid to capture varying levels of surface roughness, enabling roughness-aware Gaussian shading. Additionally, we propose a simple yet efficient geometry-lighting factorization that connects geometry and lighting via the vector outer product, significantly reducing renderer overhead when integrating volumetric attributes. Our method achieves superior photorealistic rendering for a range of open-world scenes while also accurately recovering geometry.
December 2024. https://arxiv.org/abs/2412.00905
853 DynSUP: Dynamic Gaussian Splatting from An Unposed Image Pair Weihang Li,Weirong Chen,Shenhan Qian,Jiajie Chen,Daniel Cremers,Haoang Li
AbstractRecent advances in 3D Gaussian Splatting have shown promising results. Existing methods typically assume static scenes and/or multiple images with prior poses. Dynamics, sparse views, and unknown poses significantly increase the problem complexity due to insufficient geometric constraints. To overcome this challenge, we propose a method that can use only two images without prior poses to fit Gaussians in dynamic environments. To achieve this, we introduce two technical contributions. First, we propose an object-level two-view bundle adjustment. This strategy decomposes dynamic scenes into piece-wise rigid components, and jointly estimates the camera pose and motions of dynamic objects. Second, we design an SE(3) field-driven Gaussian training method. It enables fine-grained motion modeling through learnable per-Gaussian transformations. Our method leads to high-fidelity novel view synthesis of dynamic scenes while accurately preserving temporal consistency and object motion. Experiments on both synthetic and real-world datasets demonstrate that our method significantly outperforms state-of-the-art approaches designed for the cases of static environments, multiple images, and/or known poses. Our project page is available at https://colin-de.github.io/DynSUP/.
December 2024. https://arxiv.org/abs/2412.00851
852 VR-Doh: Hands-on 3D Modeling in Virtual Reality Zhaofeng Luo,Zhitong Cui,Shijian Luo,Mengyu Chu,Minchen Li
AbstractWe present VR-Doh, a hands-on 3D modeling system designed for creating and manipulating elastoplastic objects in virtual reality (VR). The system employs the Material Point Method (MPM) for simulating realistic large deformations and incorporates optimized Gaussian Splatting for seamless rendering. With direct, hand-based interactions, users can naturally sculpt, deform, and edit objects interactively. To achieve real-time performance, we developed localized simulation techniques, optimized collision handling, and separated appearance and physical representations, ensuring smooth and responsive user interaction. The system supports both freeform creation and precise adjustments, catering to diverse modeling tasks. A user study involving novice and experienced users highlights the system's intuitive design, immersive feedback, and creative potential. Compared to traditional geometry-based modeling tools, our approach offers improved accessibility and natural interaction in specific contexts.
December 2024. https://arxiv.org/abs/2412.00814
851 ChatSplat: 3D Conversational Gaussian Splatting Hanlin Chen,Fangyin Wei,Gim Hee Lee
AbstractHumans naturally interact with their 3D surroundings using language, and modeling 3D language fields for scene understanding and interaction has gained growing interest. This paper introduces ChatSplat, a system that constructs a 3D language field, enabling rich chat-based interaction within 3D space. Unlike existing methods that primarily use CLIP-derived language features focused solely on segmentation, ChatSplat facilitates interaction on three levels: objects, views, and the entire 3D scene. For view-level interaction, we designed an encoder that encodes the rendered feature map of each view into tokens, which are then processed by a large language model (LLM) for conversation. At the scene level, ChatSplat combines multi-view tokens, enabling interactions that consider the entire scene. For object-level interaction, ChatSplat uses a patch-wise language embedding, unlike LangSplat's pixel-wise language embedding that implicitly includes mask and embedding. Here, we explicitly decouple the language embedding into separate mask and feature map representations, allowing more flexible object-level interaction. To address the challenge of learning 3D Gaussians posed by the complex and diverse distribution of language embeddings used in the LLM, we introduce a learnable normalization technique to standardize these embeddings, facilitating effective learning. Extensive experimental results demonstrate that ChatSplat supports multi-level interactions -- object, view, and scene -- within 3D space, enhancing both understanding and engagement.
December 2024. https://arxiv.org/abs/2412.00734
850 FlashSLAM: Accelerated RGB-D SLAM for Real-Time 3D Scene Reconstruction with Gaussian Splatting Phu Pham,Damon Conover,Aniket Bera
AbstractWe present FlashSLAM, a novel SLAM approach that leverages 3D Gaussian Splatting for efficient and robust 3D scene reconstruction. Existing 3DGS-based SLAM methods often fall short in sparse view settings and during large camera movements due to their reliance on gradient descent-based optimization, which is both slow and inaccurate. FlashSLAM addresses these limitations by combining 3DGS with a fast vision-based camera tracking technique, utilizing a pretrained feature matching model and point cloud registration for precise pose estimation in under 80 ms - a 90% reduction in tracking time compared to SplaTAM - without costly iterative rendering. In sparse settings, our method achieves up to a 92% improvement in average tracking accuracy over previous methods. Additionally, it accounts for noise in depth sensors, enhancing robustness when using unspecialized devices such as smartphones. Extensive experiments show that FlashSLAM performs reliably across both sparse and dense settings, in synthetic and real-world environments. Evaluations on benchmark datasets highlight its superior accuracy and efficiency, establishing FlashSLAM as a versatile and high-performance solution for SLAM, advancing the state-of-the-art in 3D reconstruction across diverse applications.
December 2024. https://arxiv.org/abs/2412.00682
849 A Lesson in Splats: Teacher-Guided Diffusion for 3D Gaussian Splats Generation with 2D Supervision Chensheng Peng,Ido Sobol,Masayoshi Tomizuka,Kurt Keutzer,Chenfeng Xu,Or Litany
AbstractWe introduce a diffusion model for Gaussian Splats, SplatDiffusion, to enable generation of three-dimensional structures from single images, addressing the ill-posed nature of lifting 2D inputs to 3D. Existing methods rely on deterministic, feed-forward predictions, which limit their ability to handle the inherent ambiguity of 3D inference from 2D data. Diffusion models have recently shown promise as powerful generative models for 3D data, including Gaussian splats; however, standard diffusion frameworks typically require the target signal and denoised signal to be in the same modality, which is challenging given the scarcity of 3D data. To overcome this, we propose a novel training strategy that decouples the denoised modality from the supervision modality. By using a deterministic model as a noisy teacher to create the noised signal and transitioning from single-step to multi-step denoising supervised by an image rendering loss, our approach significantly enhances performance compared to the deterministic teacher. Additionally, our method is flexible, as it can learn from various 3D Gaussian Splat (3DGS) teachers with minimal adaptation; we demonstrate this by surpassing the performance of two different deterministic models as teachers, highlighting the potential generalizability of our framework. Our approach further incorporates a guidance mechanism to aggregate information from multiple views, enhancing reconstruction quality when more than one view is available. Experimental results on object-level and scene-level datasets demonstrate the effectiveness of our framework.
December 2024. https://arxiv.org/abs/2412.00623
848 Speedy-Splat: Fast 3D Gaussian Splatting with Sparse Pixels and Sparse Primitives Alex Hanson,Allen Tu,Geng Lin,Vasu Singla,Matthias Zwicker,Tom Goldstein
Abstract3D Gaussian Splatting (3D-GS) is a recent 3D scene reconstruction technique that enables real-time rendering of novel views by modeling scenes as parametric point clouds of differentiable 3D Gaussians. However, its rendering speed and model size still present bottlenecks, especially in resource-constrained settings. In this paper, we identify and address two key inefficiencies in 3D-GS, achieving substantial improvements in rendering speed, model size, and training time. First, we optimize the rendering pipeline to precisely localize Gaussians in the scene, boosting rendering speed without altering visual fidelity. Second, we introduce a novel pruning technique and integrate it into the training pipeline, significantly reducing model size and training time while further raising rendering speed. Our Speedy-Splat approach combines these techniques to accelerate average rendering speed by a drastic $6.71\times$ across scenes from the Mip-NeRF 360, Tanks & Temples, and Deep Blending datasets with $10.6\times$ fewer primitives than 3D-GS.
December 2024. https://arxiv.org/abs/2412.00578
847 Instant3dit: Multiview Inpainting for Fast Editing of 3D Objects Amir Barda,Matheus Gadelha,Vladimir G. Kim,Noam Aigerman,Amit H. Bermano,Thibault Groueix
AbstractWe propose a generative technique to edit 3D shapes, represented as meshes, NeRFs, or Gaussian Splats, in approximately 3 seconds, without the need for running an SDS type of optimization. Our key insight is to cast 3D editing as a multiview image inpainting problem, as this representation is generic and can be mapped back to any 3D representation using the bank of available Large Reconstruction Models. We explore different fine-tuning strategies to obtain both multiview generation and inpainting capabilities within the same diffusion model. In particular, the design of the inpainting mask is an important factor of training an inpainting model, and we propose several masking strategies to mimic the types of edits a user would perform on a 3D shape. Our approach takes 3D generative editing from hours to seconds and produces higher-quality results compared to previous works.
December 2024. https://arxiv.org/abs/2412.00518
846 LineGS : 3D Line Segment Representation on 3D Gaussian Splatting Chenggang Yang,Yuang Shi,Wei Tsang Ooi
AbstractAbstract representations of 3D scenes are essential in computer vision, supporting tasks like mapping, localization, and surface reconstruction. Line segments are commonly used to capture scene structure, but existing 3D reconstruction methods often face limitations, either from instability in 2D projections or noise in direct 3D data. This paper introduces LineGS, a method that integrates geometry-guided 3D line reconstruction with a 3D Gaussian splatting model to improve accuracy. By leveraging Gaussian point densities along scene edges, LineGS refines initial line segments, aligning them more closely with the scene's geometric features. Experiments confirm that this approach enhances the fit to 3D structures, providing an efficient and reliable abstract representation of 3D scenes.
December 2024. https://arxiv.org/abs/2412.00477
845 ReconX: Reconstruct Any Scene from Sparse Views with Video Diffusion Model Fangfu Liu,Wenqiang Sun,Hanyang Wang,Yikai Wang,Haowen Sun,Junliang Ye,Jun Zhang,Yueqi Duan
AbstractAdvancements in 3D scene reconstruction have transformed 2D images from the real world into 3D models, producing realistic 3D results from hundreds of input photos. Despite great success in dense-view reconstruction scenarios, rendering a detailed scene from insufficient captured views is still an ill-posed optimization problem, often resulting in artifacts and distortions in unseen areas. In this paper, we propose ReconX, a novel 3D scene reconstruction paradigm that reframes the ambiguous reconstruction challenge as a temporal generation task. The key insight is to unleash the strong generative prior of large pre-trained video diffusion models for sparse-view reconstruction. However, 3D view consistency struggles to be accurately preserved in directly generated video frames from pre-trained models. To address this, given limited input views, the proposed ReconX first constructs a global point cloud and encodes it into a contextual space as the 3D structure condition. Guided by the condition, the video diffusion model then synthesizes video frames that are both detail-preserved and exhibit a high degree of 3D consistency, ensuring the coherence of the scene from various perspectives. Finally, we recover the 3D scene from the generated video through a confidence-aware 3D Gaussian Splatting optimization scheme. Extensive experiments on various real-world datasets show the superiority of our ReconX over state-of-the-art methods in terms of quality and generalizability.
August 2024. https://arxiv.org/abs/2408.16767
844 GradiSeg: Gradient-Guided Gaussian Segmentation with Enhanced 3D Boundary Precision Zehao Li,Wenwei Han,Yujun Cai,Hao Jiang,Baolong Bi,Shuqin Gao,Honglong Zhao,Zhaoqi Wang
AbstractWhile 3D Gaussian Splatting enables high-quality real-time rendering, existing Gaussian-based frameworks for 3D semantic segmentation still face significant challenges in boundary recognition accuracy. To address this, we propose a novel 3DGS-based framework named GradiSeg, incorporating Identity Encoding to construct a deeper semantic understanding of scenes. Our approach introduces two key modules: Identity Gradient Guided Densification (IGD) and Local Adaptive K-Nearest Neighbors (LA-KNN). The IGD module supervises gradients of Identity Encoding to refine Gaussian distributions along object boundaries, aligning them closely with boundary contours. Meanwhile, the LA-KNN module employs position gradients to adaptively establish locality-aware propagation of Identity Encodings, preventing irregular Gaussian spreads near boundaries. We validate the effectiveness of our method through comprehensive experiments. Results show that GradiSeg effectively addresses boundary-related issues, significantly improving segmentation accuracy without compromising scene reconstruction quality. Furthermore, our method's robust segmentation capability and decoupled Identity Encoding representation make it highly suitable for various downstream scene editing tasks, including 3D object removal, swapping and so on.
December 2024. https://arxiv.org/abs/2412.00392
843 MoSca: Dynamic Gaussian Fusion from Casual Videos via 4D Motion Scaffolds Jiahui Lei,Yijia Weng,Adam Harley,Leonidas Guibas,Kostas Daniilidis
AbstractWe introduce 4D Motion Scaffolds (MoSca), a modern 4D reconstruction system designed to reconstruct and synthesize novel views of dynamic scenes from monocular videos captured casually in the wild. To address such a challenging and ill-posed inverse problem, we leverage prior knowledge from foundational vision models and lift the video data to a novel Motion Scaffold (MoSca) representation, which compactly and smoothly encodes the underlying motions/deformations. The scene geometry and appearance are then disentangled from the deformation field and are encoded by globally fusing the Gaussians anchored onto the MoSca and optimized via Gaussian Splatting. Additionally, camera focal length and poses can be solved using bundle adjustment without the need of any other pose estimation tools. Experiments demonstrate state-of-the-art performance on dynamic rendering benchmarks and its effectiveness on real videos.
May 2024. https://arxiv.org/abs/2405.17421
842 DROID-Splat: Combining end-to-end SLAM with 3D Gaussian Splatting Christian Homeyer,Leon Begiristain,Christoph Schn\xc3\xb6rr
AbstractRecent progress in scene synthesis makes standalone SLAM systems purely based on optimizing hyperprimitives with a Rendering objective possible. However, the tracking performance still lacks behind traditional and end-to-end SLAM systems. An optimal trade-off between robustness, speed and accuracy has not yet been reached, especially for monocular video. In this paper, we introduce a SLAM system based on an end-to-end Tracker and extend it with a Renderer based on recent 3D Gaussian Splatting techniques. Our framework \textbf{DroidSplat} achieves both SotA tracking and rendering results on common SLAM benchmarks. We implemented multiple building blocks of modern SLAM systems to run in parallel, allowing for fast inference on common consumer GPU's. Recent progress in monocular depth prediction and camera calibration allows our system to achieve strong results even on in-the-wild data without known camera intrinsics. Code will be available at \url{https://github.com/ChenHoy/DROID-Splat}.
November 2024. https://arxiv.org/abs/2411.17660
841 DeSplat: Decomposed Gaussian Splatting for Distractor-Free Rendering Yihao Wang,Marcus Klasson,Matias Turkulainen,Shuzhe Wang,Juho Kannala,Arno Solin
AbstractGaussian splatting enables fast novel view synthesis in static 3D environments. However, reconstructing real-world environments remains challenging as distractors or occluders break the multi-view consistency assumption required for accurate 3D reconstruction. Most existing methods rely on external semantic information from pre-trained models, introducing additional computational overhead as pre-processing steps or during optimization. In this work, we propose a novel method, DeSplat, that directly separates distractors and static scene elements purely based on volume rendering of Gaussian primitives. We initialize Gaussians within each camera view for reconstructing the view-specific distractors to separately model the static 3D scene and distractors in the alpha compositing stages. DeSplat yields an explicit scene separation of static elements and distractors, achieving comparable results to prior distractor-free approaches without sacrificing rendering speed. We demonstrate DeSplat's effectiveness on three benchmark data sets for distractor-free novel view synthesis. See the project website at https://aaltoml.github.io/desplat/.
November 2024. https://arxiv.org/abs/2411.19756
840 TexGaussian: Generating High-quality PBR Material via Octree-based 3D Gaussian Splatting Bojun Xiong,Jialun Liu,Jiakui Hu,Chenming Wu,Jinbo Wu,Xing Liu,Chen Zhao,Errui Ding,Zhouhui Lian
AbstractPhysically Based Rendering (PBR) materials play a crucial role in modern graphics, enabling photorealistic rendering across diverse environment maps. Developing an effective and efficient algorithm that is capable of automatically generating high-quality PBR materials rather than RGB texture for 3D meshes can significantly streamline the 3D content creation. Most existing methods leverage pre-trained 2D diffusion models for multi-view image synthesis, which often leads to severe inconsistency between the generated textures and input 3D meshes. This paper presents TexGaussian, a novel method that uses octant-aligned 3D Gaussian Splatting for rapid PBR material generation. Specifically, we place each 3D Gaussian on the finest leaf node of the octree built from the input 3D mesh to render the multiview images not only for the albedo map but also for roughness and metallic. Moreover, our model is trained in a regression manner instead of diffusion denoising, capable of generating the PBR material for a 3D mesh in a single feed-forward process. Extensive experiments on publicly available benchmarks demonstrate that our method synthesizes more visually pleasing PBR materials and runs faster than previous methods in both unconditional and text-conditional scenarios, which exhibit better consistency with the given geometry. Our code and trained models are available at https://3d-aigc.github.io/TexGaussian.
November 2024. https://arxiv.org/abs/2411.19654
839 Tortho-Gaussian: Splatting True Digital Orthophoto Maps Xin Wang,Wendi Zhang,Hong Xie,Haibin Ai,Qiangqiang Yuan,Zongqian Zhan
AbstractTrue Digital Orthophoto Maps (TDOMs) are essential products for digital twins and Geographic Information Systems (GIS). Traditionally, TDOM generation involves a complex set of traditional photogrammetric process, which may deteriorate due to various challenges, including inaccurate Digital Surface Model (DSM), degenerated occlusion detections, and visual artifacts in weak texture regions and reflective surfaces, etc. To address these challenges, we introduce TOrtho-Gaussian, a novel method inspired by 3D Gaussian Splatting (3DGS) that generates TDOMs through orthogonal splatting of optimized anisotropic Gaussian kernel. More specifically, we first simplify the orthophoto generation by orthographically splatting the Gaussian kernels onto 2D image planes, formulating a geometrically elegant solution that avoids the need for explicit DSM and occlusion detection. Second, to produce TDOM of large-scale area, a divide-and-conquer strategy is adopted to optimize memory usage and time efficiency of training and rendering for 3DGS. Lastly, we design a fully anisotropic Gaussian kernel that adapts to the varying characteristics of different regions, particularly improving the rendering quality of reflective surfaces and slender structures. Extensive experimental evaluations demonstrate that our method outperforms existing commercial software in several aspects, including the accuracy of building boundaries, the visual quality of low-texture regions and building facades. These results underscore the potential of our approach for large-scale urban scene reconstruction, offering a robust alternative for enhancing TDOM quality and scalability.
November 2024. https://arxiv.org/abs/2411.19594
838 Gaussian Splashing: Direct Volumetric Rendering Underwater Nir Mualem,Roy Amoyal,Oren Freifeld,Derya Akkaynak
AbstractIn underwater images, most useful features are occluded by water. The extent of the occlusion depends on imaging geometry and can vary even across a sequence of burst images. As a result, 3D reconstruction methods robust on in-air scenes, like Neural Radiance Field methods (NeRFs) or 3D Gaussian Splatting (3DGS), fail on underwater scenes. While a recent underwater adaptation of NeRFs achieved state-of-the-art results, it is impractically slow: reconstruction takes hours and its rendering rate, in frames per second (FPS), is less than 1. Here, we present a new method that takes only a few minutes for reconstruction and renders novel underwater scenes at 140 FPS. Named Gaussian Splashing, our method unifies the strengths and speed of 3DGS with an image formation model for capturing scattering, introducing innovations in the rendering and depth estimation procedures and in the 3DGS loss function. Despite the complexities of underwater adaptation, our method produces images at unparalleled speeds with superior details. Moreover, it reveals distant scene details with far greater clarity than other methods, dramatically improving reconstructed and rendered images. We demonstrate results on existing datasets and a new dataset we have collected. Additional visual results are available at: https://bgu-cs-vil.github.io/gaussiansplashingUW.github.io/ .
November 2024. https://arxiv.org/abs/2411.19588
837 Bootstraping Clustering of Gaussians for View-consistent 3D Scene Understanding Wenbo Zhang,Lu Zhang,Ping Hu,Liqian Ma,Yunzhi Zhuge,Huchuan Lu
AbstractInjecting semantics into 3D Gaussian Splatting (3DGS) has recently garnered significant attention. While current approaches typically distill 3D semantic features from 2D foundational models (e.g., CLIP and SAM) to facilitate novel view segmentation and semantic understanding, their heavy reliance on 2D supervision can undermine cross-view semantic consistency and necessitate complex data preparation processes, therefore hindering view-consistent scene understanding. In this work, we present FreeGS, an unsupervised semantic-embedded 3DGS framework that achieves view-consistent 3D scene understanding without the need for 2D labels. Instead of directly learning semantic features, we introduce the IDentity-coupled Semantic Field (IDSF) into 3DGS, which captures both semantic representations and view-consistent instance indices for each Gaussian. We optimize IDSF with a two-step alternating strategy: semantics help to extract coherent instances in 3D space, while the resulting instances regularize the injection of stable semantics from 2D space. Additionally, we adopt a 2D-3D joint contrastive loss to enhance the complementarity between view-consistent 3D geometry and rich semantics during the bootstrapping process, enabling FreeGS to uniformly perform tasks such as novel-view semantic segmentation, object selection, and 3D object detection. Extensive experiments on LERF-Mask, 3D-OVS, and ScanNet datasets demonstrate that FreeGS performs comparably to state-of-the-art methods while avoiding the complex data preprocessing workload.
November 2024. https://arxiv.org/abs/2411.19551
836 ReconDreamer: Crafting World Models for Driving Scene Reconstruction via Online Restoration Chaojun Ni,Guosheng Zhao,Xiaofeng Wang,Zheng Zhu,Wenkang Qin,Guan Huang,Chen Liu,Yuyin Chen,Yida Wang,Xueyang Zhang,Yifei Zhan,Kun Zhan,Peng Jia,Xianpeng Lang,Xingang Wang,Wenjun Mei
AbstractClosed-loop simulation is crucial for end-to-end autonomous driving. Existing sensor simulation methods (e.g., NeRF and 3DGS) reconstruct driving scenes based on conditions that closely mirror training data distributions. However, these methods struggle with rendering novel trajectories, such as lane changes. Recent works have demonstrated that integrating world model knowledge alleviates these issues. Despite their efficiency, these approaches still encounter difficulties in the accurate representation of more complex maneuvers, with multi-lane shifts being a notable example. Therefore, we introduce ReconDreamer, which enhances driving scene reconstruction through incremental integration of world model knowledge. Specifically, DriveRestorer is proposed to mitigate artifacts via online restoration. This is complemented by a progressive data update strategy designed to ensure high-quality rendering for more complex maneuvers. To the best of our knowledge, ReconDreamer is the first method to effectively render in large maneuvers. Experimental results demonstrate that ReconDreamer outperforms Street Gaussians in the NTA-IoU, NTL-IoU, and FID, with relative improvements by 24.87%, 6.72%, and 29.97%. Furthermore, ReconDreamer surpasses DriveDreamer4D with PVG during large maneuver rendering, as verified by a relative improvement of 195.87% in the NTA-IoU metric and a comprehensive user study.
November 2024. https://arxiv.org/abs/2411.19548
835 T-3DGS: Removing Transient Objects for 3D Scene Reconstruction Vadim Pryadilshchikov,Alexander Markin,Artem Komarichev,Ruslan Rakhimov,Peter Wonka,Evgeny Burnaev
AbstractWe propose a novel framework to remove transient objects from input videos for 3D scene reconstruction using Gaussian Splatting. Our framework consists of the following steps. In the first step, we propose an unsupervised training strategy for a classification network to distinguish between transient objects and static scene parts based on their different training behavior inside the 3D Gaussian Splatting reconstruction. In the second step, we improve the boundary quality and stability of the detected transients by combining our results from the first step with an off-the-shelf segmentation method. We also propose a simple and effective strategy to track objects in the input video forward and backward in time. Our results show an improvement over the current state of the art in existing sparsely captured datasets and significant improvements in a newly proposed densely captured (video) dataset. More results and code are available at https://transient-3dgs.github.io.
December 2024. https://arxiv.org/abs/2412.00155
834 RF-3DGS: Wireless Channel Modeling with Radio Radiance Field and 3D Gaussian Splatting Lihao Zhang,Haijian Sun,Samuel Berweger,Camillo Gentile,Rose Qingyang Hu
AbstractPrecisely modeling radio propagation in complex environments has been a significant challenge, especially with the advent of 5G and beyond networks, where managing massive antenna arrays demands more detailed information. Traditional methods, such as empirical models and ray tracing, often fall short, either due to insufficient details or with challenges for real-time applications. Inspired by the newly proposed 3D Gaussian Splatting method in computer vision domain, which outperforms in reconstructing optical radiance fields, we propose RF-3DGS, a novel approach that enables precise site-specific reconstruction of radio radiance fields from sparse samples. RF-3DGS can render spatial spectra at arbitrary positions within 2 ms following a brief 3-minute training period, effectively identifying dominant propagation paths at these locations. Furthermore, RF-3DGS can provide fine-grained Channel State Information (CSI) of these paths, including the angle of departure and delay. Our experiments, calibrated through real-world measurements, demonstrate that RF-3DGS not only significantly improves rendering quality, training speed, and rendering speed compared to state-of-the-art methods but also holds great potential for supporting wireless communication and advanced applications such as Integrated Sensing and Communication (ISAC).
November 2024. https://arxiv.org/abs/2411.19420
833 SADG: Segment Any Dynamic Gaussian Without Object Trackers Yun-Jin Li,Mariia Gladkova,Yan Xia,Daniel Cremers
AbstractUnderstanding dynamic 3D scenes is fundamental for various applications, including extended reality (XR) and autonomous driving. Effectively integrating semantic information into 3D reconstruction enables holistic representation that opens opportunities for immersive and interactive applications. We introduce SADG, Segment Any Dynamic Gaussian Without Object Trackers, a novel approach that combines dynamic Gaussian Splatting representation and semantic information without reliance on object IDs. In contrast to existing works, we do not rely on supervision based on object identities to enable consistent segmentation of dynamic 3D objects. To this end, we propose to learn semantically-aware features by leveraging masks generated from the Segment Anything Model (SAM) and utilizing our novel contrastive learning objective based on hard pixel mining. The learned Gaussian features can be effectively clustered without further post-processing. This enables fast computation for further object-level editing, such as object removal, composition, and style transfer by manipulating the Gaussians in the scene. We further extend several dynamic novel-view datasets with segmentation benchmarks to enable testing of learned feature fields from unseen viewpoints. We evaluate SADG on proposed benchmarks and demonstrate the superior performance of our approach in segmenting objects within dynamic scenes along with its effectiveness for further downstream editing tasks.
November 2024. https://arxiv.org/abs/2411.19290
832 AGS-Mesh: Adaptive Gaussian Splatting and Meshing with Geometric Priors for Indoor Room Reconstruction Using Smartphones Xuqian Ren,Matias Turkulainen,Jiepeng Wang,Otto Seiskari,Iaroslav Melekhov,Juho Kannala,Esa Rahtu
AbstractGeometric priors are often used to enhance 3D reconstruction. With many smartphones featuring low-resolution depth sensors and the prevalence of off-the-shelf monocular geometry estimators, incorporating geometric priors as regularization signals has become common in 3D vision tasks. However, the accuracy of depth estimates from mobile devices is typically poor for highly detailed geometry, and monocular estimators often suffer from poor multi-view consistency and precision. In this work, we propose an approach for joint surface depth and normal refinement of Gaussian Splatting methods for accurate 3D reconstruction of indoor scenes. We develop supervision strategies that adaptively filters low-quality depth and normal estimates by comparing the consistency of the priors during optimization. We mitigate regularization in regions where prior estimates have high uncertainty or ambiguities. Our filtering strategy and optimization design demonstrate significant improvements in both mesh estimation and novel-view synthesis for both 3D and 2D Gaussian Splatting-based methods on challenging indoor room datasets. Furthermore, we explore the use of alternative meshing strategies for finer geometry extraction. We develop a scale-aware meshing strategy inspired by TSDF and octree-based isosurface extraction, which recovers finer details from Gaussian models compared to other commonly used open-source meshing tools. Our code is released in https://xuqianren.github.io/ags_mesh_website/.
November 2024. https://arxiv.org/abs/2411.19271
831 DGE: Direct Gaussian 3D Editing by Consistent Multi-view Editing Minghao Chen,Iro Laina,Andrea Vedaldi
AbstractWe consider the problem of editing 3D objects and scenes based on open-ended language instructions. A common approach to this problem is to use a 2D image generator or editor to guide the 3D editing process, obviating the need for 3D data. However, this process is often inefficient due to the need for iterative updates of costly 3D representations, such as neural radiance fields, either through individual view edits or score distillation sampling. A major disadvantage of this approach is the slow convergence caused by aggregating inconsistent information across views, as the guidance from 2D models is not multi-view consistent. We thus introduce the Direct Gaussian Editor (DGE), a method that addresses these issues in two stages. First, we modify a given high-quality image editor like InstructPix2Pix to be multi-view consistent. To do so, we propose a training-free approach that integrates cues from the 3D geometry of the underlying scene. Second, given a multi-view consistent edited sequence of images, we directly and efficiently optimize the 3D representation, which is based on 3D Gaussian Splatting. Because it avoids incremental and iterative edits, DGE is significantly more accurate and efficient than existing approaches and offers additional benefits, such as enabling selective editing of parts of the scene.
April 2024. https://arxiv.org/abs/2404.18929
830 Unleashing the Power of Data Synthesis in Visual Localization Sihang Li,Siqi Tan,Bowen Chang,Jing Zhang,Chen Feng,Yiming Li
AbstractVisual localization, which estimates a camera's pose within a known scene, is a long-standing challenge in vision and robotics. Recent end-to-end methods that directly regress camera poses from query images have gained attention for fast inference. However, existing methods often struggle to generalize to unseen views. In this work, we aim to unleash the power of data synthesis to promote the generalizability of pose regression. Specifically, we lift real 2D images into 3D Gaussian Splats with varying appearance and deblurring abilities, which are then used as a data engine to synthesize more posed images. To fully leverage the synthetic data, we build a two-branch joint training pipeline, with an adversarial discriminator to bridge the syn-to-real gap. Experiments on established benchmarks show that our method outperforms state-of-the-art end-to-end approaches, reducing translation and rotation errors by 50% and 21.6% on indoor datasets, and 35.56% and 38.7% on outdoor datasets. We also validate the effectiveness of our method in dynamic driving scenarios under varying weather conditions. Notably, as data synthesis scales up, our method exhibits a growing ability to interpolate and extrapolate training data for localizing unseen views. Project Page: https://ai4ce.github.io/RAP/
December 2024. https://arxiv.org/abs/2412.00138
829 InstanceGaussian: Appearance-Semantic Joint Gaussian Representation for 3D Instance-Level Perception Haijie Li,Yanmin Wu,Jiarui Meng,Qiankun Gao,Zhiyao Zhang,Ronggang Wang,Jian Zhang
Abstract3D scene understanding has become an essential area of research with applications in autonomous driving, robotics, and augmented reality. Recently, 3D Gaussian Splatting (3DGS) has emerged as a powerful approach, combining explicit modeling with neural adaptability to provide efficient and detailed scene representations. However, three major challenges remain in leveraging 3DGS for scene understanding: 1) an imbalance between appearance and semantics, where dense Gaussian usage for fine-grained texture modeling does not align with the minimal requirements for semantic attributes; 2) inconsistencies between appearance and semantics, as purely appearance-based Gaussians often misrepresent object boundaries; and 3) reliance on top-down instance segmentation methods, which struggle with uneven category distributions, leading to over- or under-segmentation. In this work, we propose InstanceGaussian, a method that jointly learns appearance and semantic features while adaptively aggregating instances. Our contributions include: i) a novel Semantic-Scaffold-GS representation balancing appearance and semantics to improve feature representations and boundary delineation; ii) a progressive appearance-semantic joint training strategy to enhance stability and segmentation accuracy; and iii) a bottom-up, category-agnostic instance aggregation approach that addresses segmentation challenges through farthest point sampling and connected component analysis. Our approach achieves state-of-the-art performance in category-agnostic, open-vocabulary 3D point-level segmentation, highlighting the effectiveness of the proposed representation and training strategies. Project page: https://lhj-git.github.io/InstanceGaussian/
November 2024. https://arxiv.org/abs/2411.19235
828 Gaussians-to-Life: Text-Driven Animation of 3D Gaussian Splatting Scenes Thomas Wimmer,Michael Oechsle,Michael Niemeyer,Federico Tombari
AbstractState-of-the-art novel view synthesis methods achieve impressive results for multi-view captures of static 3D scenes. However, the reconstructed scenes still lack "liveliness," a key component for creating engaging 3D experiences. Recently, novel video diffusion models generate realistic videos with complex motion and enable animations of 2D images, however they cannot naively be used to animate 3D scenes as they lack multi-view consistency. To breathe life into the static world, we propose Gaussians2Life, a method for animating parts of high-quality 3D scenes in a Gaussian Splatting representation. Our key idea is to leverage powerful video diffusion models as the generative component of our model and to combine these with a robust technique to lift 2D videos into meaningful 3D motion. We find that, in contrast to prior work, this enables realistic animations of complex, pre-existing 3D scenes and further enables the animation of a large variety of object classes, while related work is mostly focused on prior-based character animation, or single 3D objects. Our model enables the creation of consistent, immersive 3D experiences for arbitrary scenes.
November 2024. https://arxiv.org/abs/2411.19233
827 View-Consistent 3D Editing with Gaussian Splatting Yuxuan Wang,Xuanyu Yi,Zike Wu,Na Zhao,Long Chen,Hanwang Zhang
AbstractThe advent of 3D Gaussian Splatting (3DGS) has revolutionized 3D editing, offering efficient, high-fidelity rendering and enabling precise local manipulations. Currently, diffusion-based 2D editing models are harnessed to modify multi-view rendered images, which then guide the editing of 3DGS models. However, this approach faces a critical issue of multi-view inconsistency, where the guidance images exhibit significant discrepancies across views, leading to mode collapse and visual artifacts of 3DGS. To this end, we introduce View-consistent Editing (VcEdit), a novel framework that seamlessly incorporates 3DGS into image editing processes, ensuring multi-view consistency in edited guidance images and effectively mitigating mode collapse issues. VcEdit employs two innovative consistency modules: the Cross-attention Consistency Module and the Editing Consistency Module, both designed to reduce inconsistencies in edited images. By incorporating these consistency modules into an iterative pattern, VcEdit proficiently resolves the issue of multi-view inconsistency, facilitating high-quality 3DGS editing across a diverse range of scenes. Further video results are shown in http://vcedit.github.io.
March 2024. https://arxiv.org/abs/2403.11868
826 GSurf: 3D Reconstruction via Signed Distance Fields with Direct Gaussian Supervision Baixin Xu,Jiangbei Hu,Jiaze Li,Ying He
AbstractSurface reconstruction from multi-view images is a core challenge in 3D vision. Recent studies have explored signed distance fields (SDF) within Neural Radiance Fields (NeRF) to achieve high-fidelity surface reconstructions. However, these approaches often suffer from slow training and rendering speeds compared to 3D Gaussian splatting (3DGS). Current state-of-the-art techniques attempt to fuse depth information to extract geometry from 3DGS, but frequently result in incomplete reconstructions and fragmented surfaces. In this paper, we introduce GSurf, a novel end-to-end method for learning a signed distance field directly from Gaussian primitives. The continuous and smooth nature of SDF addresses common issues in the 3DGS family, such as holes resulting from noisy or missing depth data. By using Gaussian splatting for rendering, GSurf avoids the redundant volume rendering typically required in other GS and SDF integrations. Consequently, GSurf achieves faster training and rendering speeds while delivering 3D reconstruction quality comparable to neural implicit surface methods, such as VolSDF and NeuS. Experimental results across various benchmark datasets demonstrate the effectiveness of our method in producing high-fidelity 3D reconstructions.
November 2024. https://arxiv.org/abs/2411.15723
825 SuperGaussians: Enhancing Gaussian Splatting Using Primitives with Spatially Varying Colors Rui Xu,Wenyue Chen,Jiepeng Wang,Yuan Liu,Peng Wang,Lin Gao,Shiqing Xin,Taku Komura,Xin Li,Wenping Wang
AbstractGaussian Splattings demonstrate impressive results in multi-view reconstruction based on Gaussian explicit representations. However, the current Gaussian primitives only have a single view-dependent color and an opacity to represent the appearance and geometry of the scene, resulting in a non-compact representation. In this paper, we introduce a new method called SuperGaussians that utilizes spatially varying colors and opacity in a single Gaussian primitive to improve its representation ability. We have implemented bilinear interpolation, movable kernels, and even tiny neural networks as spatially varying functions. Quantitative and qualitative experimental results demonstrate that all three functions outperform the baseline, with the best movable kernels achieving superior novel view synthesis performance on multiple datasets, highlighting the strong potential of spatially varying functions.
November 2024. https://arxiv.org/abs/2411.18966
824 SelfSplat: Pose-Free and 3D Prior-Free Generalizable 3D Gaussian Splatting Gyeongjin Kang,Jisang Yoo,Jihyeon Park,Seungtae Nam,Hyeonsoo Im,Sangheon Shin,Sangpil Kim,Eunbyung Park
AbstractWe propose SelfSplat, a novel 3D Gaussian Splatting model designed to perform pose-free and 3D prior-free generalizable 3D reconstruction from unposed multi-view images. These settings are inherently ill-posed due to the lack of ground-truth data, learned geometric information, and the need to achieve accurate 3D reconstruction without finetuning, making it difficult for conventional methods to achieve high-quality results. Our model addresses these challenges by effectively integrating explicit 3D representations with self-supervised depth and pose estimation techniques, resulting in reciprocal improvements in both pose accuracy and 3D reconstruction quality. Furthermore, we incorporate a matching-aware pose estimation network and a depth refinement module to enhance geometry consistency across views, ensuring more accurate and stable 3D reconstructions. To present the performance of our method, we evaluated it on large-scale real-world datasets, including RealEstate10K, ACID, and DL3DV. SelfSplat achieves superior results over previous state-of-the-art methods in both appearance and geometry quality, also demonstrates strong cross-dataset generalization capabilities. Extensive ablation studies and analysis also validate the effectiveness of our proposed methods. Code and pretrained models are available at https://gynjn.github.io/selfsplat/
November 2024. https://arxiv.org/abs/2411.17190
823 NexusSplats: Efficient 3D Gaussian Splatting in the Wild Yuzhou Tang,Dejun Xu,Yongjie Hou,Zhenzhong Wang,Min Jiang
AbstractWhile 3D Gaussian Splatting (3DGS) has recently demonstrated remarkable rendering quality and efficiency in 3D scene reconstruction, it struggles with varying lighting conditions and incidental occlusions in real-world scenarios. To accommodate varying lighting conditions, existing 3DGS extensions apply color mapping to the massive Gaussian primitives with individually optimized appearance embeddings. To handle occlusions, they predict pixel-wise uncertainties via 2D image features for occlusion capture. Nevertheless, such massive color mapping and pixel-wise uncertainty prediction strategies suffer from not only additional computational costs but also coarse-grained lighting and occlusion handling. In this work, we propose a nexus kernel-driven approach, termed NexusSplats, for efficient and finer 3D scene reconstruction under complex lighting and occlusion conditions. In particular, NexusSplats leverages a novel light decoupling strategy where appearance embeddings are optimized based on nexus kernels instead of massive Gaussian primitives, thus accelerating reconstruction speeds while ensuring local color consistency for finer textures. Additionally, a Gaussian-wise uncertainty mechanism is developed, aligning 3D structures with 2D image features for fine-grained occlusion handling. Experimental results demonstrate that NexusSplats achieves state-of-the-art rendering quality while reducing reconstruction time by up to 70.4% compared to the current best in quality.
November 2024. https://arxiv.org/abs/2411.14514
822 RIGI: Rectifying Image-to-3D Generation Inconsistency via Uncertainty-aware Learning Jiacheng Wang,Zhedong Zheng,Wei Xu,Ping Liu
AbstractGiven a single image of a target object, image-to-3D generation aims to reconstruct its texture and geometric shape. Recent methods often utilize intermediate media, such as multi-view images or videos, to bridge the gap between input image and the 3D target, thereby guiding the generation of both shape and texture. However, inconsistencies in the generated multi-view snapshots frequently introduce noise and artifacts along object boundaries, undermining the 3D reconstruction process. To address this challenge, we leverage 3D Gaussian Splatting (3DGS) for 3D reconstruction, and explicitly integrate uncertainty-aware learning into the reconstruction process. By capturing the stochasticity between two Gaussian models, we estimate an uncertainty map, which is subsequently used for uncertainty-aware regularization to rectify the impact of inconsistencies. Specifically, we optimize both Gaussian models simultaneously, calculating the uncertainty map by evaluating the discrepancies between rendered images from identical viewpoints. Based on the uncertainty map, we apply adaptive pixel-wise loss weighting to regularize the models, reducing reconstruction intensity in high-uncertainty regions. This approach dynamically detects and mitigates conflicts in multi-view labels, leading to smoother results and effectively reducing artifacts. Extensive experiments show the effectiveness of our method in improving 3D generation quality by reducing inconsistencies and artifacts.
November 2024. https://arxiv.org/abs/2411.18866
821 Textured Gaussians for Enhanced 3D Scene Appearance Modeling Brian Chao,Hung-Yu Tseng,Lorenzo Porzi,Chen Gao,Tuotuo Li,Qinbo Li,Ayush Saraf,Jia-Bin Huang,Johannes Kopf,Gordon Wetzstein,Changil Kim
Abstract3D Gaussian Splatting (3DGS) has recently emerged as a state-of-the-art 3D reconstruction and rendering technique due to its high-quality results and fast training and rendering time. However, pixels covered by the same Gaussian are always shaded in the same color up to a Gaussian falloff scaling factor. Furthermore, the finest geometric detail any individual Gaussian can represent is a simple ellipsoid. These properties of 3DGS greatly limit the expressivity of individual Gaussian primitives. To address these issues, we draw inspiration from texture and alpha mapping in traditional graphics and integrate it with 3DGS. Specifically, we propose a new generalized Gaussian appearance representation that augments each Gaussian with alpha~(A), RGB, or RGBA texture maps to model spatially varying color and opacity across the extent of each Gaussian. As such, each Gaussian can represent a richer set of texture patterns and geometric structures, instead of just a single color and ellipsoid as in naive Gaussian Splatting. Surprisingly, we found that the expressivity of Gaussians can be greatly improved by using alpha-only texture maps, and further augmenting Gaussians with RGB texture maps achieves the highest expressivity. We validate our method on a wide variety of standard benchmark datasets and our own custom captures at both the object and scene levels. We demonstrate image quality improvements over existing methods while using a similar or lower number of Gaussians.
November 2024. https://arxiv.org/abs/2411.18625
820 GaussianSpeech: Audio-Driven Gaussian Avatars Shivangi Aneja,Artem Sevastopolsky,Tobias Kirschstein,Justus Thies,Angela Dai,Matthias Nie\xc3\x9fner
AbstractWe introduce GaussianSpeech, a novel approach that synthesizes high-fidelity animation sequences of photo-realistic, personalized 3D human head avatars from spoken audio. To capture the expressive, detailed nature of human heads, including skin furrowing and finer-scale facial movements, we propose to couple speech signal with 3D Gaussian splatting to create realistic, temporally coherent motion sequences. We propose a compact and efficient 3DGS-based avatar representation that generates expression-dependent color and leverages wrinkle- and perceptually-based losses to synthesize facial details, including wrinkles that occur with different expressions. To enable sequence modeling of 3D Gaussian splats with audio, we devise an audio-conditioned transformer model capable of extracting lip and expression features directly from audio input. Due to the absence of high-quality datasets of talking humans in correspondence with audio, we captured a new large-scale multi-view dataset of audio-visual sequences of talking humans with native English accents and diverse facial geometry. GaussianSpeech consistently achieves state-of-the-art performance with visually natural motion at real time rendering rates, while encompassing diverse facial expressions and styles.
November 2024. https://arxiv.org/abs/2411.18675
819 PhyCAGE: Physically Plausible Compositional 3D Asset Generation from a Single Image Han Yan,Mingrui Zhang,Yang Li,Chao Ma,Pan Ji
AbstractWe present PhyCAGE, the first approach for physically plausible compositional 3D asset generation from a single image. Given an input image, we first generate consistent multi-view images for components of the assets. These images are then fitted with 3D Gaussian Splatting representations. To ensure that the Gaussians representing objects are physically compatible with each other, we introduce a Physical Simulation-Enhanced Score Distillation Sampling (PSE-SDS) technique to further optimize the positions of the Gaussians. It is achieved by setting the gradient of the SDS loss as the initial velocity of the physical simulation, allowing the simulator to act as a physics-guided optimizer that progressively corrects the Gaussians' positions to a physically compatible state. Experimental results demonstrate that the proposed method can generate physically plausible compositional 3D assets given a single image.
November 2024. https://arxiv.org/abs/2411.18548
818 Point Cloud Unsupervised Pre-training via 3D Gaussian Splatting Hao Liu,Minglin Chen,Yanni Ma,Haihong Xiao,Ying He
AbstractPre-training on large-scale unlabeled datasets contribute to the model achieving powerful performance on 3D vision tasks, especially when annotations are limited. However, existing rendering-based self-supervised frameworks are computationally demanding and memory-intensive during pre-training due to the inherent nature of volume rendering. In this paper, we propose an efficient framework named GS$^3$ to learn point cloud representation, which seamlessly integrates fast 3D Gaussian Splatting into the rendering-based framework. The core idea behind our framework is to pre-train the point cloud encoder by comparing rendered RGB images with real RGB images, as only Gaussian points enriched with learned rich geometric and appearance information can produce high-quality renderings. Specifically, we back-project the input RGB-D images into 3D space and use a point cloud encoder to extract point-wise features. Then, we predict 3D Gaussian points of the scene from the learned point cloud features and uses a tile-based rasterizer for image rendering. Finally, the pre-trained point cloud encoder can be fine-tuned to adapt to various downstream 3D tasks, including high-level perception tasks such as 3D segmentation and detection, as well as low-level tasks such as 3D scene reconstruction. Extensive experiments on downstream tasks demonstrate the strong transferability of the pre-trained point cloud encoder and the effectiveness of our self-supervised learning framework. In addition, our GS$^3$ framework is highly efficient, achieving approximately 9$\times$ pre-training speedup and less than 0.25$\times$ memory cost compared to the previous rendering-based framework Ponder.
November 2024. https://arxiv.org/abs/2411.18667
817 HEMGS: A Hybrid Entropy Model for 3D Gaussian Splatting Data Compression Lei Liu,Zhenghao Chen,Dong Xu
AbstractFast progress in 3D Gaussian Splatting (3DGS) has made 3D Gaussians popular for 3D modeling and image rendering, but this creates big challenges in data storage and transmission. To obtain a highly compact 3DGS representation, we propose a hybrid entropy model for Gaussian Splatting (HEMGS) data compression, which comprises two primary components, a hyperprior network and an autoregressive network. To effectively reduce structural redundancy across attributes, we apply a progressive coding algorithm to generate hyperprior features, in which we use previously compressed attributes and location as prior information. In particular, to better extract the location features from these compressed attributes, we adopt a domain-aware and instance-aware architecture to respectively capture domain-aware structural relations without additional storage costs and reveal scene-specific features through MLPs. Additionally, to reduce redundancy within each attribute, we leverage relationships between neighboring compressed elements within the attributes through an autoregressive network. Given its unique structure, we propose an adaptive context coding algorithm with flexible receptive fields to effectively capture adjacent compressed elements. Overall, we integrate our HEMGS into an end-to-end optimized 3DGS compression framework and the extensive experimental results on four benchmarks indicate that our method achieves about 40\% average reduction in size while maintaining the rendering quality over our baseline method and achieving state-of-the-art compression results.
November 2024. https://arxiv.org/abs/2411.18473
816 Neural Surface Priors for Editable Gaussian Splatting Jakub Szymkowiak,Weronika Jakubowska,Dawid Malarz,Weronika Smolak-Dy\xc5\xbcewska,Maciej Zi\xc4\x99ba,Przemys\xc5\x82aw Musialski,Wojtek Pa\xc5\x82ubicki,Przemys\xc5\x82aw Spurek
AbstractIn computer graphics, there is a need to recover easily modifiable representations of 3D geometry and appearance from image data. We introduce a novel method for this task using 3D Gaussian Splatting, which enables intuitive scene editing through mesh adjustments. Starting with input images and camera poses, we reconstruct the underlying geometry using a neural Signed Distance Field and extract a high-quality mesh. Our model then estimates a set of Gaussians, where each component is flat, and the opacity is conditioned on the recovered neural surface. To facilitate editing, we produce a proxy representation that encodes information about the Gaussians' shape and position. Unlike other methods, our pipeline allows modifications applied to the extracted mesh to be propagated to the proxy representation, from which we recover the updated parameters of the Gaussians. This effectively transfers the mesh edits back to the recovered appearance representation. By leveraging mesh-guided transformations, our approach simplifies 3D scene editing and offers improvements over existing methods in terms of usability and visual fidelity of edits. The complete source code for this project can be accessed at \url{https://github.com/WJakubowska/NeuralSurfacePriors}
November 2024. https://arxiv.org/abs/2411.18311
815 Make-It-Animatable: An Efficient Framework for Authoring Animation-Ready 3D Characters Zhiyang Guo,Jinxu Xiang,Kai Ma,Wengang Zhou,Houqiang Li,Ran Zhang
Abstract3D characters are essential to modern creative industries, but making them animatable often demands extensive manual work in tasks like rigging and skinning. Existing automatic rigging tools face several limitations, including the necessity for manual annotations, rigid skeleton topologies, and limited generalization across diverse shapes and poses. An alternative approach is to generate animatable avatars pre-bound to a rigged template mesh. However, this method often lacks flexibility and is typically limited to realistic human shapes. To address these issues, we present Make-It-Animatable, a novel data-driven method to make any 3D humanoid model ready for character animation in less than one second, regardless of its shapes and poses. Our unified framework generates high-quality blend weights, bones, and pose transformations. By incorporating a particle-based shape autoencoder, our approach supports various 3D representations, including meshes and 3D Gaussian splats. Additionally, we employ a coarse-to-fine representation and a structure-aware modeling strategy to ensure both accuracy and robustness, even for characters with non-standard skeleton structures. We conducted extensive experiments to validate our framework's effectiveness. Compared to existing methods, our approach demonstrates significant improvements in both quality and speed.
November 2024. https://arxiv.org/abs/2411.18197
814 SplatAD: Real-Time Lidar and Camera Rendering with 3D Gaussian Splatting for Autonomous Driving Georg Hess,Carl Lindstr\xc3\xb6m,Maryam Fatemi,Christoffer Petersson,Lennart Svensson
AbstractEnsuring the safety of autonomous robots, such as self-driving vehicles, requires extensive testing across diverse driving scenarios. Simulation is a key ingredient for conducting such testing in a cost-effective and scalable way. Neural rendering methods have gained popularity, as they can build simulation environments from collected logs in a data-driven manner. However, existing neural radiance field (NeRF) methods for sensor-realistic rendering of camera and lidar data suffer from low rendering speeds, limiting their applicability for large-scale testing. While 3D Gaussian Splatting (3DGS) enables real-time rendering, current methods are limited to camera data and are unable to render lidar data essential for autonomous driving. To address these limitations, we propose SplatAD, the first 3DGS-based method for realistic, real-time rendering of dynamic scenes for both camera and lidar data. SplatAD accurately models key sensor-specific phenomena such as rolling shutter effects, lidar intensity, and lidar ray dropouts, using purpose-built algorithms to optimize rendering efficiency. Evaluation across three autonomous driving datasets demonstrates that SplatAD achieves state-of-the-art rendering quality with up to +2 PSNR for NVS and +3 PSNR for reconstruction while increasing rendering speed over NeRF-based methods by an order of magnitude. See https://research.zenseact.com/publications/splatad/ for our project page.
November 2024. https://arxiv.org/abs/2411.16816
813 SmileSplat: Generalizable Gaussian Splats for Unconstrained Sparse Images Yanyan Li,Yixin Fang,Federico Tombari,Gim Hee Lee
AbstractSparse Multi-view Images can be Learned to predict explicit radiance fields via Generalizable Gaussian Splatting approaches, which can achieve wider application prospects in real-life when ground-truth camera parameters are not required as inputs. In this paper, a novel generalizable Gaussian Splatting method, SmileSplat, is proposed to reconstruct pixel-aligned Gaussian surfels for diverse scenarios only requiring unconstrained sparse multi-view images. First, Gaussian surfels are predicted based on the multi-head Gaussian regression decoder, which can are represented with less degree-of-freedom but have better multi-view consistency. Furthermore, the normal vectors of Gaussian surfel are enhanced based on high-quality of normal priors. Second, the Gaussians and camera parameters (both extrinsic and intrinsic) are optimized to obtain high-quality Gaussian radiance fields for novel view synthesis tasks based on the proposed Bundle-Adjusting Gaussian Splatting module. Extensive experiments on novel view rendering and depth map prediction tasks are conducted on public datasets, demonstrating that the proposed method achieves state-of-the-art performance in various 3D vision tasks. More information can be found on our project page (https://yanyan-li.github.io/project/gs/smilesplat)
November 2024. https://arxiv.org/abs/2411.18072
812 GLS: Geometry-aware 3D Language Gaussian Splatting Jiaxiong Qiu,Liu Liu,Zhizhong Su,Tianwei Lin
AbstractRecently, 3D Gaussian Splatting (3DGS) has achieved significant performance on indoor surface reconstruction and open-vocabulary segmentation. This paper presents GLS, a unified framework of surface reconstruction and open-vocabulary segmentation based on 3DGS. GLS extends two fields by exploring the correlation between them. For indoor surface reconstruction, we introduce surface normal prior as a geometric cue to guide the rendered normal, and use the normal error to optimize the rendered depth. For open-vocabulary segmentation, we employ 2D CLIP features to guide instance features and utilize DEVA masks to enhance their view consistency. Extensive experiments demonstrate the effectiveness of jointly optimizing surface reconstruction and open-vocabulary segmentation, where GLS surpasses state-of-the-art approaches of each task on MuSHRoom, ScanNet++, and LERF-OVS datasets. Code will be available at https://github.com/JiaxiongQ/GLS.
November 2024. https://arxiv.org/abs/2411.18066
811 HI-SLAM2: Geometry-Aware Gaussian SLAM for Fast Monocular Scene Reconstruction Wei Zhang,Qing Cheng,David Skuddis,Niclas Zeller,Daniel Cremers,Norbert Haala
AbstractWe present HI-SLAM2, a geometry-aware Gaussian SLAM system that achieves fast and accurate monocular scene reconstruction using only RGB input. Existing Neural SLAM or 3DGS-based SLAM methods often trade off between rendering quality and geometry accuracy, our research demonstrates that both can be achieved simultaneously with RGB input alone. The key idea of our approach is to enhance the ability for geometry estimation by combining easy-to-obtain monocular priors with learning-based dense SLAM, and then using 3D Gaussian splatting as our core map representation to efficiently model the scene. Upon loop closure, our method ensures on-the-fly global consistency through efficient pose graph bundle adjustment and instant map updates by explicitly deforming the 3D Gaussian units based on anchored keyframe updates. Furthermore, we introduce a grid-based scale alignment strategy to maintain improved scale consistency in prior depths for finer depth details. Through extensive experiments on Replica, ScanNet, and ScanNet++, we demonstrate significant improvements over existing Neural SLAM methods and even surpass RGB-D-based methods in both reconstruction and rendering quality. The project page and source code will be made available at https://hi-slam2.github.io/.
November 2024. https://arxiv.org/abs/2411.17982
810 Distractor-free Generalizable 3D Gaussian Splatting Yanqi Bao,Jing Liao,Jing Huo,Yang Gao
AbstractWe present DGGS, a novel framework addressing the previously unexplored challenge of Distractor-free Generalizable 3D Gaussian Splatting (3DGS). It accomplishes two key objectives: fortifying generalizable 3DGS against distractor-laden data during both training and inference phases, while successfully extending cross-scene adaptation capabilities to conventional distractor-free approaches. To achieve these objectives, DGGS introduces a scene-agnostic reference-based mask prediction and refinement methodology during training phase, coupled with a training view selection strategy, effectively improving distractor prediction accuracy and training stability. Moreover, to address distractor-induced voids and artifacts during inference stage, we propose a two-stage inference framework for better reference selection based on the predicted distractor masks, complemented by a distractor pruning module to eliminate residual distractor effects. Extensive generalization experiments demonstrate DGGS's advantages under distractor-laden conditions. Additionally, experimental results show that our scene-agnostic mask inference achieves accuracy comparable to scene-specific trained methods. Homepage is \url{https://github.com/bbbbby-99/DGGS}.
November 2024. https://arxiv.org/abs/2411.17605
809 GaussianDiffusion: 3D Gaussian Splatting for Denoising Diffusion Probabilistic Models with Structured Noise Xinhai Li,Huaibin Wang,Kuo-Kun Tseng
AbstractText-to-3D, known for its efficient generation methods and expansive creative potential, has garnered significant attention in the AIGC domain. However, the pixel-wise rendering of NeRF and its ray marching light sampling constrain the rendering speed, impacting its utility in downstream industrial applications. Gaussian Splatting has recently shown a trend of replacing the traditional pointwise sampling technique commonly used in NeRF-based methodologies, and it is changing various aspects of 3D reconstruction. This paper introduces a novel text to 3D content generation framework, Gaussian Diffusion, based on Gaussian Splatting and produces more realistic renderings. The challenge of achieving multi-view consistency in 3D generation significantly impedes modeling complexity and accuracy. Taking inspiration from SJC, we explore employing multi-view noise distributions to perturb images generated by 3D Gaussian Splatting, aiming to rectify inconsistencies in multi-view geometry. We ingeniously devise an efficient method to generate noise that produces Gaussian noise from diverse viewpoints, all originating from a shared noise source. Furthermore, vanilla 3D Gaussian-based generation tends to trap models in local minima, causing artifacts like floaters, burrs, or proliferative elements. To mitigate these issues, we propose the variational Gaussian Splatting technique to enhance the quality and stability of 3D appearance. To our knowledge, our approach represents the first comprehensive utilization of Gaussian Diffusion across the entire spectrum of 3D content generation processes.
November 2023. https://arxiv.org/abs/2311.11221
808 RNG: Relightable Neural Gaussians Jiahui Fan,Fujun Luan,Jian Yang,Milo\xc5\xa1 Ha\xc5\xa1an,Beibei Wang
Abstract3D Gaussian Splatting (3DGS) has shown impressive results for the novel view synthesis task, where lighting is assumed to be fixed. However, creating relightable 3D assets, especially for objects with ill-defined shapes (fur, fabric, etc.), remains a challenging task. The decomposition between light, geometry, and material is ambiguous, especially if either smooth surface assumptions or surfacebased analytical shading models do not apply. We propose Relightable Neural Gaussians (RNG), a novel 3DGS-based framework that enables the relighting of objects with both hard surfaces or soft boundaries, while avoiding assumptions on the shading model. We condition the radiance at each point on both view and light directions. We also introduce a shadow cue, as well as a depth refinement network to improve shadow accuracy. Finally, we propose a hybrid forward-deferred fitting strategy to balance geometry and appearance quality. Our method achieves significantly faster training (1.3 hours) and rendering (60 frames per second) compared to a prior method based on neural radiance fields and produces higher-quality shadows than a concurrent 3DGS-based method.
September 2024. https://arxiv.org/abs/2409.19702
807 3D Convex Splatting: Radiance Field Rendering with 3D Smooth Convexes Jan Held,Renaud Vandeghen,Abdullah Hamdi,Adrien Deliege,Anthony Cioppa,Silvio Giancola,Andrea Vedaldi,Bernard Ghanem,Marc Van Droogenbroeck
AbstractRecent advances in radiance field reconstruction, such as 3D Gaussian Splatting (3DGS), have achieved high-quality novel view synthesis and fast rendering by representing scenes with compositions of Gaussian primitives. However, 3D Gaussians present several limitations for scene reconstruction. Accurately capturing hard edges is challenging without significantly increasing the number of Gaussians, creating a large memory footprint. Moreover, they struggle to represent flat surfaces, as they are diffused in space. Without hand-crafted regularizers, they tend to disperse irregularly around the actual surface. To circumvent these issues, we introduce a novel method, named 3D Convex Splatting (3DCS), which leverages 3D smooth convexes as primitives for modeling geometrically-meaningful radiance fields from multi-view images. Smooth convex shapes offer greater flexibility than Gaussians, allowing for a better representation of 3D scenes with hard edges and dense volumes using fewer primitives. Powered by our efficient CUDA-based rasterizer, 3DCS achieves superior performance over 3DGS on benchmarks such as Mip-NeRF360, Tanks and Temples, and Deep Blending. Specifically, our method attains an improvement of up to 0.81 in PSNR and 0.026 in LPIPS compared to 3DGS while maintaining high rendering speeds and reducing the number of required primitives. Our results highlight the potential of 3D Convex Splatting to become the new standard for high-quality scene reconstruction and novel view synthesis. Project page: convexsplatting.github.io.
November 2024. https://arxiv.org/abs/2411.14974
806 EvaGaussians: Event Stream Assisted Gaussian Splatting from Blurry Images Wangbo Yu,Chaoran Feng,Jiye Tang,Jiashu Yang,Xu Jia,Yuchao Yang,Li Yuan,Yonghong Tian
Abstract3D Gaussian Splatting (3D-GS) has demonstrated exceptional capabilities in 3D scene reconstruction and novel view synthesis. However, its training heavily depends on high-quality, sharp images and accurate camera poses. Fulfilling these requirements can be challenging in non-ideal real-world scenarios, where motion-blurred images are commonly encountered in high-speed moving cameras or low-light environments that require long exposure times. To address these challenges, we introduce Event Stream Assisted Gaussian Splatting (EvaGaussians), a novel approach that integrates event streams captured by an event camera to assist in reconstructing high-quality 3D-GS from blurry images. Capitalizing on the high temporal resolution and dynamic range offered by the event camera, we leverage the event streams to explicitly model the formation process of motion-blurred images and guide the deblurring reconstruction of 3D-GS. By jointly optimizing the 3D-GS parameters and recovering camera motion trajectories during the exposure time, our method can robustly facilitate the acquisition of high-fidelity novel views with intricate texture details. We comprehensively evaluated our method and compared it with previous state-of-the-art deblurring rendering methods. Both qualitative and quantitative comparisons demonstrate that our method surpasses existing techniques in restoring fine details from blurry images and producing high-fidelity novel views.
May 2024. https://arxiv.org/abs/2405.20224
805 Baking Gaussian Splatting into Diffusion Denoiser for Fast and Scalable Single-stage Image-to-3D Generation Yuanhao Cai,He Zhang,Kai Zhang,Yixun Liang,Mengwei Ren,Fujun Luan,Qing Liu,Soo Ye Kim,Jianming Zhang,Zhifei Zhang,Yuqian Zhou,Zhe Lin,Alan Yuille
AbstractExisting feed-forward image-to-3D methods mainly rely on 2D multi-view diffusion models that cannot guarantee 3D consistency. These methods easily collapse when changing the prompt view direction and mainly handle object-centric prompt images. In this paper, we propose a novel single-stage 3D diffusion model, DiffusionGS, for object and scene generation from a single view. DiffusionGS directly outputs 3D Gaussian point clouds at each timestep to enforce view consistency and allow the model to generate robustly given prompt views of any directions, beyond object-centric inputs. Plus, to improve the capability and generalization ability of DiffusionGS, we scale up 3D training data by developing a scene-object mixed training strategy. Experiments show that our method enjoys better generation quality (2.20 dB higher in PSNR and 23.25 lower in FID) and over 5x faster speed (~6s on an A100 GPU) than SOTA methods. The user study and text-to-3D applications also reveals the practical values of our method. Our Project page at https://caiyuanhao1998.github.io/project/DiffusionGS/ shows the video and interactive generation results.
November 2024. https://arxiv.org/abs/2411.14384
804 Geometry Field Splatting with Gaussian Surfels Kaiwen Jiang,Venkataram Sivaram,Cheng Peng,Ravi Ramamoorthi
AbstractGeometric reconstruction of opaque surfaces from images is a longstanding challenge in computer vision, with renewed interest from volumetric view synthesis algorithms using radiance fields. We leverage the geometry field proposed in recent work for stochastic opaque surfaces, which can then be converted to volume densities. We adapt Gaussian kernels or surfels to splat the geometry field rather than the volume, enabling precise reconstruction of opaque solids. Our first contribution is to derive an efficient and almost exact differentiable rendering algorithm for geometry fields parameterized by Gaussian surfels, while removing current approximations involving Taylor series and no self-attenuation. Next, we address the discontinuous loss landscape when surfels cluster near geometry, showing how to guarantee that the rendered color is a continuous function of the colors of the kernels, irrespective of ordering. Finally, we use latent representations with spherical harmonics encoded reflection vectors rather than spherical harmonics encoded colors to better address specular surfaces. We demonstrate significant improvement in the quality of reconstructed 3D surfaces on widely-used datasets.
November 2024. https://arxiv.org/abs/2411.17067
803 4D Scaffold Gaussian Splatting for Memory Efficient Dynamic Scene Reconstruction Woong Oh Cho,In Cho,Seoha Kim,Jeongmin Bae,Youngjung Uh,Seon Joo Kim
AbstractExisting 4D Gaussian methods for dynamic scene reconstruction offer high visual fidelity and fast rendering. However, these methods suffer from excessive memory and storage demands, which limits their practical deployment. This paper proposes a 4D anchor-based framework that retains visual quality and rendering speed of 4D Gaussians while significantly reducing storage costs. Our method extends 3D scaffolding to 4D space, and leverages sparse 4D grid-aligned anchors with compressed feature vectors. Each anchor models a set of neural 4D Gaussians, each of which represent a local spatiotemporal region. In addition, we introduce a temporal coverage-aware anchor growing strategy to effectively assign additional anchors to under-reconstructed dynamic regions. Our method adjusts the accumulated gradients based on Gaussians' temporal coverage, improving reconstruction quality in dynamic regions. To reduce the number of anchors, we further present enhanced formulations of neural 4D Gaussians. These include the neural velocity, and the temporal opacity derived from a generalized Gaussian distribution. Experimental results demonstrate that our method achieves state-of-the-art visual quality and 97.8% storage reduction over 4DGS.
November 2024. https://arxiv.org/abs/2411.17044
802 G2SDF: Surface Reconstruction from Explicit Gaussians with Implicit SDFs Kunyi Li,Michael Niemeyer,Zeyu Chen,Nassir Navab,Federico Tombari
AbstractState-of-the-art novel view synthesis methods such as 3D Gaussian Splatting (3DGS) achieve remarkable visual quality. While 3DGS and its variants can be rendered efficiently using rasterization, many tasks require access to the underlying 3D surface, which remains challenging to extract due to the sparse and explicit nature of this representation. In this paper, we introduce G2SDF, a novel approach that addresses this limitation by integrating a neural implicit Signed Distance Field (SDF) into the Gaussian Splatting framework. Our method links the opacity values of Gaussians with their distances to the surface, ensuring a closer alignment of Gaussians with the scene surface. To extend this approach to unbounded scenes at varying scales, we propose a normalization function that maps any range to a fixed interval. To further enhance reconstruction quality, we leverage an off-the-shelf depth estimator as pseudo ground truth during Gaussian Splatting optimization. By establishing a differentiable connection between the explicit Gaussians and the implicit SDF, our approach enables high-quality surface reconstruction and rendering. Experimental results on several real-world datasets demonstrate that G2SDF achieves superior reconstruction quality than prior works while maintaining the efficiency of 3DGS.
November 2024. https://arxiv.org/abs/2411.16898
801 PreF3R: Pose-Free Feed-Forward 3D Gaussian Splatting from Variable-length Image Sequence Zequn Chen,Jiezhi Yang,Heng Yang
AbstractWe present PreF3R, Pose-Free Feed-forward 3D Reconstruction from an image sequence of variable length. Unlike previous approaches, PreF3R removes the need for camera calibration and reconstructs the 3D Gaussian field within a canonical coordinate frame directly from a sequence of unposed images, enabling efficient novel-view rendering. We leverage DUSt3R's ability for pair-wise 3D structure reconstruction, and extend it to sequential multi-view input via a spatial memory network, eliminating the need for optimization-based global alignment. Additionally, PreF3R incorporates a dense Gaussian parameter prediction head, which enables subsequent novel-view synthesis with differentiable rasterization. This allows supervising our model with the combination of photometric loss and pointmap regression loss, enhancing both photorealism and structural accuracy. Given a sequence of ordered images, PreF3R incrementally reconstructs the 3D Gaussian field at 20 FPS, therefore enabling real-time novel-view rendering. Empirical experiments demonstrate that PreF3R is an effective solution for the challenging task of pose-free feed-forward novel-view synthesis, while also exhibiting robust generalization to unseen scenes.
November 2024. https://arxiv.org/abs/2411.16877
800 SplatFlow: Multi-View Rectified Flow Model for 3D Gaussian Splatting Synthesis Hyojun Go,Byeongjun Park,Jiho Jang,Jin-Young Kim,Soonwoo Kwon,Changick Kim
AbstractText-based generation and editing of 3D scenes hold significant potential for streamlining content creation through intuitive user interactions. While recent advances leverage 3D Gaussian Splatting (3DGS) for high-fidelity and real-time rendering, existing methods are often specialized and task-focused, lacking a unified framework for both generation and editing. In this paper, we introduce SplatFlow, a comprehensive framework that addresses this gap by enabling direct 3DGS generation and editing. SplatFlow comprises two main components: a multi-view rectified flow (RF) model and a Gaussian Splatting Decoder (GSDecoder). The multi-view RF model operates in latent space, generating multi-view images, depths, and camera poses simultaneously, conditioned on text prompts, thus addressing challenges like diverse scene scales and complex camera trajectories in real-world settings. Then, the GSDecoder efficiently translates these latent outputs into 3DGS representations through a feed-forward 3DGS method. Leveraging training-free inversion and inpainting techniques, SplatFlow enables seamless 3DGS editing and supports a broad range of 3D tasks-including object editing, novel view synthesis, and camera pose estimation-within a unified framework without requiring additional complex pipelines. We validate SplatFlow's capabilities on the MVImgNet and DL3DV-7K datasets, demonstrating its versatility and effectiveness in various 3D generation, editing, and inpainting-based tasks.
November 2024. https://arxiv.org/abs/2411.16443
799 Quadratic Gaussian Splatting for Efficient and Detailed Surface Reconstruction Ziyu Zhang,Binbin Huang,Hanqing Jiang,Liyang Zhou,Xiaojun Xiang,Shunhan Shen
AbstractRecently, 3D Gaussian Splatting (3DGS) has attracted attention for its superior rendering quality and speed over Neural Radiance Fields (NeRF). To address 3DGS's limitations in surface representation, 2D Gaussian Splatting (2DGS) introduced disks as scene primitives to model and reconstruct geometries from multi-view images, offering view-consistent geometry. However, the disk's first-order linear approximation often leads to over-smoothed results. We propose Quadratic Gaussian Splatting (QGS), a novel method that replaces disks with quadric surfaces, enhancing geometric fitting, whose code will be open-sourced. QGS defines Gaussian distributions in non-Euclidean space, allowing primitives to capture more complex textures. As a second-order surface approximation, QGS also renders spatial curvature to guide the normal consistency term, to effectively reduce over-smoothing. Moreover, QGS is a generalized version of 2DGS that achieves more accurate and detailed reconstructions, as verified by experiments on DTU and TNT, demonstrating its effectiveness in surpassing current state-of-the-art methods in geometry reconstruction. Our code willbe released as open source.
November 2024. https://arxiv.org/abs/2411.16392
798 Reconstructing Satellites in 3D from Amateur Telescope Images Zhiming Chang,Boyang Liu,Yifei Xia,Weimin Bai,Youming Guo,Boxin Shi,He Sun
AbstractThis paper proposes a framework for the 3D reconstruction of satellites in low-Earth orbit, utilizing videos captured by small amateur telescopes. The video data obtained from these telescopes differ significantly from data for standard 3D reconstruction tasks, characterized by intense motion blur, atmospheric turbulence, pervasive background light pollution, extended focal length and constrained observational perspectives. To address these challenges, our approach begins with a comprehensive pre-processing workflow that encompasses deep learning-based image restoration, feature point extraction and camera pose initialization. We apply a customized Structure from Motion (SfM) approach, followed by an improved 3D Gaussian splatting algorithm, to achieve high-fidelity 3D model reconstruction. Our technique supports simultaneous 3D Gaussian training and pose estimation, enabling the robust generation of intricate 3D point clouds from sparse, noisy data. The procedure is further bolstered by a post-editing phase designed to eliminate noise points inconsistent with our prior knowledge of a satellite's geometric constraints. We validate our approach on synthetic datasets and actual observations of China's Space Station and International Space Station, showcasing its significant advantages over existing methods in reconstructing 3D space objects from ground-based observations.
April 2024. https://arxiv.org/abs/2404.18394
797 Event-boosted Deformable 3D Gaussians for Fast Dynamic Scene Reconstruction Wenhao Xu,Wenming Weng,Yueyi Zhang,Ruikang Xu,Zhiwei Xiong
Abstract3D Gaussian Splatting (3D-GS) enables real-time rendering but struggles with fast motion due to low temporal resolution of RGB cameras. To address this, we introduce the first approach combining event cameras, which capture high-temporal-resolution, continuous motion data, with deformable 3D-GS for fast dynamic scene reconstruction. We observe that threshold modeling for events plays a crucial role in achieving high-quality reconstruction. Therefore, we propose a GS-Threshold Joint Modeling (GTJM) strategy, creating a mutually reinforcing process that greatly improves both 3D reconstruction and threshold modeling. Moreover, we introduce a Dynamic-Static Decomposition (DSD) strategy that first identifies dynamic areas by exploiting the inability of static Gaussians to represent motions, then applies a buffer-based soft decomposition to separate dynamic and static areas. This strategy accelerates rendering by avoiding unnecessary deformation in static areas, and focuses on dynamic areas to enhance fidelity. Our approach achieves high-fidelity dynamic reconstruction at 156 FPS with a 400$\times$400 resolution on an RTX 3090 GPU.
November 2024. https://arxiv.org/abs/2411.16180
796 NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model Jinpeng Liu,Jiale Xu,Weihao Cheng,Yiming Gao,Xintao Wang,Ying Shan,Yansong Tang
AbstractWe introduce NovelGS, a diffusion model for Gaussian Splatting (GS) given sparse-view images. Recent works leverage feed-forward networks to generate pixel-aligned Gaussians, which could be fast rendered. Unfortunately, the method was unable to produce satisfactory results for areas not covered by the input images due to the formulation of these methods. In contrast, we leverage the novel view denoising through a transformer-based network to generate 3D Gaussians. Specifically, by incorporating both conditional views and noisy target views, the network predicts pixel-aligned Gaussians for each view. During training, the rendered target and some additional views of the Gaussians are supervised. During inference, the target views are iteratively rendered and denoised from pure noise. Our approach demonstrates state-of-the-art performance in addressing the multi-view image reconstruction challenge. Due to generative modeling of unseen regions, NovelGS effectively reconstructs 3D objects with consistent and sharp textures. Experimental results on publicly available datasets indicate that NovelGS substantially surpasses existing image-to-3D frameworks, both qualitatively and quantitatively. We also demonstrate the potential of NovelGS in generative tasks, such as text-to-3D and image-to-3D, by integrating it with existing multiview diffusion models. We will make the code publicly accessible.
November 2024. https://arxiv.org/abs/2411.16779
795 DyGASR: Dynamic Generalized Exponential Splatting with Surface Alignment for Accelerated 3D Mesh Reconstruction Shengchao Zhao,Yundong Li
AbstractRecent advancements in 3D Gaussian Splatting (3DGS), which lead to high-quality novel view synthesis and accelerated rendering, have remarkably improved the quality of radiance field reconstruction. However, the extraction of mesh from a massive number of minute 3D Gaussian points remains great challenge due to the large volume of Gaussians and difficulty of representation of sharp signals caused by their inherent low-pass characteristics. To address this issue, we propose DyGASR, which utilizes generalized exponential function instead of traditional 3D Gaussian to decrease the number of particles and dynamically optimize the representation of the captured signal. In addition, it is observed that reconstructing mesh with Generalized Exponential Splatting(GES) without modifications frequently leads to failures since the generalized exponential distribution centroids may not precisely align with the scene surface. To overcome this, we adopt Sugar's approach and introduce Generalized Surface Regularization (GSR), which reduces the smallest scaling vector of each point cloud to zero and ensures normal alignment perpendicular to the surface, facilitating subsequent Poisson surface mesh reconstruction. Additionally, we propose a dynamic resolution adjustment strategy that utilizes a cosine schedule to gradually increase image resolution from low to high during the training stage, thus avoiding constant full resolution, which significantly boosts the reconstruction speed. Our approach surpasses existing 3DGS-based mesh reconstruction methods, as evidenced by extensive evaluations on various scene datasets, demonstrating a 25\% increase in speed, and a 30\% reduction in memory usage.
November 2024. https://arxiv.org/abs/2411.09156
794 SCIGS: 3D Gaussians Splatting from a Snapshot Compressive Image Zixu Wang,Hao Yang,Yu Guo,Fei Wang
AbstractSnapshot Compressive Imaging (SCI) offers a possibility for capturing information in high-speed dynamic scenes, requiring efficient reconstruction method to recover scene information. Despite promising results, current deep learning-based and NeRF-based reconstruction methods face challenges: 1) deep learning-based reconstruction methods struggle to maintain 3D structural consistency within scenes, and 2) NeRF-based reconstruction methods still face limitations in handling dynamic scenes. To address these challenges, we propose SCIGS, a variant of 3DGS, and develop a primitive-level transformation network that utilizes camera pose stamps and Gaussian primitive coordinates as embedding vectors. This approach resolves the necessity of camera pose in vanilla 3DGS and enhances multi-view 3D structural consistency in dynamic scenes by utilizing transformed primitives. Additionally, a high-frequency filter is introduced to eliminate the artifacts generated during the transformation. The proposed SCIGS is the first to reconstruct a 3D explicit scene from a single compressed image, extending its application to dynamic 3D scenes. Experiments on both static and dynamic scenes demonstrate that SCIGS not only enhances SCI decoding but also outperforms current state-of-the-art methods in reconstructing dynamic 3D scenes from a single compressed image. The code will be made available upon publication.
November 2024. https://arxiv.org/abs/2411.12471
793 UnitedVLN: Generalizable Gaussian Splatting for Continuous Vision-Language Navigation Guangzhao Dai,Jian Zhao,Yuantao Chen,Yusen Qin,Hao Zhao,Guosen Xie,Yazhou Yao,Xiangbo Shu,Xuelong Li
AbstractVision-and-Language Navigation (VLN), where an agent follows instructions to reach a target destination, has recently seen significant advancements. In contrast to navigation in discrete environments with predefined trajectories, VLN in Continuous Environments (VLN-CE) presents greater challenges, as the agent is free to navigate any unobstructed location and is more vulnerable to visual occlusions or blind spots. Recent approaches have attempted to address this by imagining future environments, either through predicted future visual images or semantic features, rather than relying solely on current observations. However, these RGB-based and feature-based methods lack intuitive appearance-level information or high-level semantic complexity crucial for effective navigation. To overcome these limitations, we introduce a novel, generalizable 3DGS-based pre-training paradigm, called UnitedVLN, which enables agents to better explore future environments by unitedly rendering high-fidelity 360 visual images and semantic features. UnitedVLN employs two key schemes: search-then-query sampling and separate-then-united rendering, which facilitate efficient exploitation of neural primitives, helping to integrate both appearance and semantic information for more robust navigation. Extensive experiments demonstrate that UnitedVLN outperforms state-of-the-art methods on existing VLN-CE benchmarks.
November 2024. https://arxiv.org/abs/2411.16053
792 PG-SLAM: Photo-realistic and Geometry-aware RGB-D SLAM in Dynamic Environments Haoang Li,Xiangqi Meng,Xingxing Zuo,Zhe Liu,Hesheng Wang,Daniel Cremers
AbstractSimultaneous localization and mapping (SLAM) has achieved impressive performance in static environments. However, SLAM in dynamic environments remains an open question. Many methods directly filter out dynamic objects, resulting in incomplete scene reconstruction and limited accuracy of camera localization. The other works express dynamic objects by point clouds, sparse joints, or coarse meshes, which fails to provide a photo-realistic representation. To overcome the above limitations, we propose a photo-realistic and geometry-aware RGB-D SLAM method by extending Gaussian splatting. Our method is composed of three main modules to 1) map the dynamic foreground including non-rigid humans and rigid items, 2) reconstruct the static background, and 3) localize the camera. To map the foreground, we focus on modeling the deformations and/or motions. We consider the shape priors of humans and exploit geometric and appearance constraints of humans and items. For background mapping, we design an optimization strategy between neighboring local maps by integrating appearance constraint into geometric alignment. As to camera localization, we leverage both static background and dynamic foreground to increase the observations for noise compensation. We explore the geometric and appearance constraints by associating 3D Gaussians with 2D optical flows and pixel patches. Experiments on various real-world datasets demonstrate that our method outperforms state-of-the-art approaches in terms of camera localization and scene representation. Source codes will be publicly available upon paper acceptance.
November 2024. https://arxiv.org/abs/2411.15800
791 ZeroGS: Training 3D Gaussian Splatting from Unposed Images Yu Chen,Rolandos Alexandros Potamias,Evangelos Ververas,Jifei Song,Jiankang Deng,Gim Hee Lee
AbstractNeural radiance fields (NeRF) and 3D Gaussian Splatting (3DGS) are popular techniques to reconstruct and render photo-realistic images. However, the pre-requisite of running Structure-from-Motion (SfM) to get camera poses limits their completeness. While previous methods can reconstruct from a few unposed images, they are not applicable when images are unordered or densely captured. In this work, we propose ZeroGS to train 3DGS from hundreds of unposed and unordered images. Our method leverages a pretrained foundation model as the neural scene representation. Since the accuracy of the predicted pointmaps does not suffice for accurate image registration and high-fidelity image rendering, we propose to mitigate the issue by initializing and finetuning the pretrained model from a seed image. Images are then progressively registered and added to the training buffer, which is further used to train the model. We also propose to refine the camera poses and pointmaps by minimizing a point-to-camera ray consistency loss across multiple views. Experiments on the LLFF dataset, the MipNeRF360 dataset, and the Tanks-and-Temples dataset show that our method recovers more accurate camera poses than state-of-the-art pose-free NeRF/3DGS methods, and even renders higher quality images than 3DGS with COLMAP poses. Our project page is available at https://aibluefisher.github.io/ZeroGS.
November 2024. https://arxiv.org/abs/2411.15779
790 Bundle Adjusted Gaussian Avatars Deblurring Muyao Niu,Yifan Zhan,Qingtian Zhu,Zhuoxiao Li,Wei Wang,Zhihang Zhong,Xiao Sun,Yinqiang Zheng
AbstractThe development of 3D human avatars from multi-view videos represents a significant yet challenging task in the field. Recent advancements, including 3D Gaussian Splattings (3DGS), have markedly progressed this domain. Nonetheless, existing techniques necessitate the use of high-quality sharp images, which are often impractical to obtain in real-world settings due to variations in human motion speed and intensity. In this study, we attempt to explore deriving sharp intrinsic 3D human Gaussian avatars from blurry video footage in an end-to-end manner. Our approach encompasses a 3D-aware, physics-oriented model of blur formation attributable to human movement, coupled with a 3D human motion model to clarify ambiguities found in motion-induced blurry images. This methodology facilitates the concurrent learning of avatar model parameters and the refinement of sub-frame motion parameters from a coarse initialization. We have established benchmarks for this task through a synthetic dataset derived from existing multi-view captures, alongside a real-captured dataset acquired through a 360-degree synchronous hybrid-exposure camera system. Comprehensive evaluations demonstrate that our model surpasses existing baselines.
November 2024. https://arxiv.org/abs/2411.16758
789 SGS-SLAM: Semantic Gaussian Splatting For Neural Dense SLAM Mingrui Li,Shuhong Liu,Heng Zhou,Guohao Zhu,Na Cheng,Tianchen Deng,Hongyu Wang
AbstractWe present SGS-SLAM, the first semantic visual SLAM system based on Gaussian Splatting. It incorporates appearance, geometry, and semantic features through multi-channel optimization, addressing the oversmoothing limitations of neural implicit SLAM systems in high-quality rendering, scene understanding, and object-level geometry. We introduce a unique semantic feature loss that effectively compensates for the shortcomings of traditional depth and color losses in object optimization. Through a semantic-guided keyframe selection strategy, we prevent erroneous reconstructions caused by cumulative errors. Extensive experiments demonstrate that SGS-SLAM delivers state-of-the-art performance in camera pose estimation, map reconstruction, precise semantic segmentation, and object-level geometric accuracy, while ensuring real-time rendering capabilities.
February 2024. https://arxiv.org/abs/2402.03246
788 DynamicAvatars: Accurate Dynamic Facial Avatars Reconstruction and Precise Editing with Diffusion Models Yangyang Qian,Yuan Sun,Yu Guo
AbstractGenerating and editing dynamic 3D head avatars are crucial tasks in virtual reality and film production. However, existing methods often suffer from facial distortions, inaccurate head movements, and limited fine-grained editing capabilities. To address these challenges, we present DynamicAvatars, a dynamic model that generates photorealistic, moving 3D head avatars from video clips and parameters associated with facial positions and expressions. Our approach enables precise editing through a novel prompt-based editing model, which integrates user-provided prompts with guiding parameters derived from large language models (LLMs). To achieve this, we propose a dual-tracking framework based on Gaussian Splatting and introduce a prompt preprocessing module to enhance editing stability. By incorporating a specialized GAN algorithm and connecting it to our control module, which generates precise guiding parameters from LLMs, we successfully address the limitations of existing methods. Additionally, we develop a dynamic editing strategy that selectively utilizes specific training datasets to improve the efficiency and adaptability of the model for dynamic editing tasks.
November 2024. https://arxiv.org/abs/2411.15732
787 EMD: Explicit Motion Modeling for High-Quality Street Gaussian Splatting Xiaobao Wei,Qingpo Wuwu,Zhongyu Zhao,Zhuangzhe Wu,Nan Huang,Ming Lu,Ningning MA,Shanghang Zhang
AbstractPhotorealistic reconstruction of street scenes is essential for developing real-world simulators in autonomous driving. While recent methods based on 3D/4D Gaussian Splatting (GS) have demonstrated promising results, they still encounter challenges in complex street scenes due to the unpredictable motion of dynamic objects. Current methods typically decompose street scenes into static and dynamic objects, learning the Gaussians in either a supervised manner (e.g., w/ 3D bounding-box) or a self-supervised manner (e.g., w/o 3D bounding-box). However, these approaches do not effectively model the motions of dynamic objects (e.g., the motion speed of pedestrians is clearly different from that of vehicles), resulting in suboptimal scene decomposition. To address this, we propose Explicit Motion Decomposition (EMD), which models the motions of dynamic objects by introducing learnable motion embeddings to the Gaussians, enhancing the decomposition in street scenes. The proposed EMD is a plug-and-play approach applicable to various baseline methods. We also propose tailored training strategies to apply EMD to both supervised and self-supervised baselines. Through comprehensive experimentation, we illustrate the effectiveness of our approach with various established baselines. The code will be released at: https://qingpowuwu.github.io/emdgaussian.github.io/.
November 2024. https://arxiv.org/abs/2411.15582
786 SplatFlow: Self-Supervised Dynamic Gaussian Splatting in Neural Motion Flow Field for Autonomous Driving Su Sun,Cheng Zhao,Zhuoyang Sun,Yingjie Victor Chen,Mei Chen
AbstractMost existing Dynamic Gaussian Splatting methods for complex dynamic urban scenarios rely on accurate object-level supervision from expensive manual labeling, limiting their scalability in real-world applications. In this paper, we introduce SplatFlow, a Self-Supervised Dynamic Gaussian Splatting within Neural Motion Flow Fields (NMFF) to learn 4D space-time representations without requiring tracked 3D bounding boxes, enabling accurate dynamic scene reconstruction and novel view RGB, depth and flow synthesis. SplatFlow designs a unified framework to seamlessly integrate time-dependent 4D Gaussian representation within NMFF, where NMFF is a set of implicit functions to model temporal motions of both LiDAR points and Gaussians as continuous motion flow fields. Leveraging NMFF, SplatFlow effectively decomposes static background and dynamic objects, representing them with 3D and 4D Gaussian primitives, respectively. NMFF also models the status correspondences of each 4D Gaussian across time, which aggregates temporal features to enhance cross-view consistency of dynamic components. SplatFlow further improves dynamic scene identification by distilling features from 2D foundational models into 4D space-time representation. Comprehensive evaluations conducted on the Waymo Open Dataset and KITTI Dataset validate SplatFlow's state-of-the-art (SOTA) performance for both image reconstruction and novel view synthesis in dynamic urban scenarios.
November 2024. https://arxiv.org/abs/2411.15482
785 Gassidy: Gaussian Splatting SLAM in Dynamic Environments Long Wen,Shixin Li,Yu Zhang,Yuhong Huang,Jianjie Lin,Fengjunjie Pan,Zhenshan Bing,Alois Knoll
Abstract3D Gaussian Splatting (3DGS) allows flexible adjustments to scene representation, enabling continuous optimization of scene quality during dense visual simultaneous localization and mapping (SLAM) in static environments. However, 3DGS faces challenges in handling environmental disturbances from dynamic objects with irregular movement, leading to degradation in both camera tracking accuracy and map reconstruction quality. To address this challenge, we develop an RGB-D dense SLAM which is called Gaussian Splatting SLAM in Dynamic Environments (Gassidy). This approach calculates Gaussians to generate rendering loss flows for each environmental component based on a designed photometric-geometric loss function. To distinguish and filter environmental disturbances, we iteratively analyze rendering loss flows to detect features characterized by changes in loss values between dynamic objects and static components. This process ensures a clean environment for accurate scene reconstruction. Compared to state-of-the-art SLAM methods, experimental results on open datasets show that Gassidy improves camera tracking precision by up to 97.9% and enhances map quality by up to 6%.
November 2024. https://arxiv.org/abs/2411.15476
784 SplatSDF: Boosting Neural Implicit SDF via Gaussian Splatting Fusion Runfa Blark Li,Keito Suzuki,Bang Du,Ki Myung Brian Le,Nikolay Atanasov,Truong Nguyen
AbstractA signed distance function (SDF) is a useful representation for continuous-space geometry and many related operations, including rendering, collision checking, and mesh generation. Hence, reconstructing SDF from image observations accurately and efficiently is a fundamental problem. Recently, neural implicit SDF (SDF-NeRF) techniques, trained using volumetric rendering, have gained a lot of attention. Compared to earlier truncated SDF (TSDF) fusion algorithms that rely on depth maps and voxelize continuous space, SDF-NeRF enables continuous-space SDF reconstruction with better geometric and photometric accuracy. However, the accuracy and convergence speed of scene-level SDF reconstruction require further improvements for many applications. With the advent of 3D Gaussian Splatting (3DGS) as an explicit representation with excellent rendering quality and speed, several works have focused on improving SDF-NeRF by introducing consistency losses on depth and surface normals between 3DGS and SDF-NeRF. However, loss-level connections alone lead to incremental improvements. We propose a novel neural implicit SDF called "SplatSDF" to fuse 3DGSandSDF-NeRF at an architecture level with significant boosts to geometric and photometric accuracy and convergence speed. Our SplatSDF relies on 3DGS as input only during training, and keeps the same complexity and efficiency as the original SDF-NeRF during inference. Our method outperforms state-of-the-art SDF-NeRF models on geometric and photometric evaluation by the time of submission.
November 2024. https://arxiv.org/abs/2411.15468
783 SafeguardGS: 3D Gaussian Primitive Pruning While Avoiding Catastrophic Scene Destruction Yongjae Lee,Zhaoliang Zhang,Deliang Fan
Abstract3D Gaussian Splatting (3DGS) has made significant strides in novel view synthesis. However, its suboptimal densification process results in the excessively large number of Gaussian primitives, which impacts frame-per-second and increases memory usage, making it unsuitable for low-end devices. To address this issue, many follow-up studies have proposed various pruning techniques with score functions designed to identify and remove less important primitives. Nonetheless, a comprehensive discussion of their effectiveness and implications across all techniques is missing. In this paper, we are the first to categorize 3DGS pruning techniques into two types: Scene-level pruning and Pixel-level pruning, distinguished by their scope for ranking primitives. Our subsequent experiments reveal that, while scene-level pruning leads to disastrous quality drops under extreme decimation of Gaussian primitives, pixel-level pruning not only sustains relatively high rendering quality with minuscule performance degradation but also provides an inherent boundary of pruning, i.e., a safeguard of Gaussian pruning. Building on this observation, we further propose multiple variations of score functions based on the factors of rendering equations and discover that assessing based on color similarity with blending weight is the most effective method for discriminating insignificant primitives. In our experiments, our SafeguardGS with the optimal score function shows the highest PSNR-per-primitive performance under an extreme pruning setting, retaining only about 10% of the primitives from the original 3DGS scene (i.e., 10x compression ratio). We believe our research provides valuable insights for optimizing 3DGS for future works.
May 2024. https://arxiv.org/abs/2405.17793
782 DepthSplat: Connecting Gaussian Splatting and Depth Haofei Xu,Songyou Peng,Fangjinhua Wang,Hermann Blum,Daniel Barath,Andreas Geiger,Marc Pollefeys
AbstractGaussian splatting and single/multi-view depth estimation are typically studied in isolation. In this paper, we present DepthSplat to connect Gaussian splatting and depth estimation and study their interactions. More specifically, we first contribute a robust multi-view depth model by leveraging pre-trained monocular depth features, leading to high-quality feed-forward 3D Gaussian splatting reconstructions. We also show that Gaussian splatting can serve as an unsupervised pre-training objective for learning powerful depth models from large-scale unlabeled datasets. We validate the synergy between Gaussian splatting and depth estimation through extensive ablation and cross-task transfer experiments. Our DepthSplat achieves state-of-the-art performance on ScanNet, RealEstate10K and DL3DV datasets in terms of both depth estimation and novel view synthesis, demonstrating the mutual benefits of connecting both tasks.
October 2024. https://arxiv.org/abs/2410.13862
781 UniGaussian: Driving Scene Reconstruction from Multiple Camera Models via Unified Gaussian Representations Yuan Ren,Guile Wu,Runhao Li,Zheyuan Yang,Yibo Liu,Xingxin Chen,Tongtong Cao,Bingbing Liu
AbstractUrban scene reconstruction is crucial for real-world autonomous driving simulators. Although existing methods have achieved photorealistic reconstruction, they mostly focus on pinhole cameras and neglect fisheye cameras. In fact, how to effectively simulate fisheye cameras in driving scene remains an unsolved problem. In this work, we propose UniGaussian, a novel approach that learns a unified 3D Gaussian representation from multiple camera models for urban scene reconstruction in autonomous driving. Our contributions are two-fold. First, we propose a new differentiable rendering method that distorts 3D Gaussians using a series of affine transformations tailored to fisheye camera models. This addresses the compatibility issue of 3D Gaussian splatting with fisheye cameras, which is hindered by light ray distortion caused by lenses or mirrors. Besides, our method maintains real-time rendering while ensuring differentiability. Second, built on the differentiable rendering method, we design a new framework that learns a unified Gaussian representation from multiple camera models. By applying affine transformations to adapt different camera models and regularizing the shared Gaussians with supervision from different modalities, our framework learns a unified 3D Gaussian representation with input data from multiple sources and achieves holistic driving scene understanding. As a result, our approach models multiple sensors (pinhole and fisheye cameras) and modalities (depth, semantic, normal and LiDAR point clouds). Our experiments show that our method achieves superior rendering quality and fast rendering speed for driving scene simulation.
November 2024. https://arxiv.org/abs/2411.15355
780 MaGS: Reconstructing and Simulating Dynamic 3D Objects with Mesh-adsorbed Gaussian Splatting Shaojie Ma,Yawei Luo,Wei Yang,Yi Yang
Abstract3D reconstruction and simulation, although interrelated, have distinct objectives: reconstruction requires a flexible 3D representation that can adapt to diverse scenes, while simulation needs a structured representation to model motion principles effectively. This paper introduces the Mesh-adsorbed Gaussian Splatting (MaGS) method to address this challenge. MaGS constrains 3D Gaussians to roam near the mesh, creating a mutually adsorbed mesh-Gaussian 3D representation. Such representation harnesses both the rendering flexibility of 3D Gaussians and the structured property of meshes. To achieve this, we introduce RMD-Net, a network that learns motion priors from video data to refine mesh deformations, alongside RGD-Net, which models the relative displacement between the mesh and Gaussians to enhance rendering fidelity under mesh constraints. To generalize to novel, user-defined deformations beyond input video without reliance on temporal data, we propose MPE-Net, which leverages inherent mesh information to bootstrap RMD-Net and RGD-Net. Due to the universality of meshes, MaGS is compatible with various deformation priors such as ARAP, SMPL, and soft physics simulation. Extensive experiments on the D-NeRF, DG-Mesh, and PeopleSnapshot datasets demonstrate that MaGS achieves state-of-the-art performance in both reconstruction and simulation.
June 2024. https://arxiv.org/abs/2406.01593
779 Neural 4D Evolution under Large Topological Changes from 2D Images AmirHossein Naghi Razlighi,Tiago Novello,Asen Nachkov,Thomas Probst,Danda Paudel
AbstractIn the literature, it has been shown that the evolution of the known explicit 3D surface to the target one can be learned from 2D images using the instantaneous flow field, where the known and target 3D surfaces may largely differ in topology. We are interested in capturing 4D shapes whose topology changes largely over time. We encounter that the straightforward extension of the existing 3D-based method to the desired 4D case performs poorly. In this work, we address the challenges in extending 3D neural evolution to 4D under large topological changes by proposing two novel modifications. More precisely, we introduce (i) a new architecture to discretize and encode the deformation and learn the SDF and (ii) a technique to impose the temporal consistency. (iii) Also, we propose a rendering scheme for color prediction based on Gaussian splatting. Furthermore, to facilitate learning directly from 2D images, we propose a learning framework that can disentangle the geometry and appearance from RGB images. This method of disentanglement, while also useful for the 4D evolution problem that we are concentrating on, is also novel and valid for static scenes. Our extensive experiments on various data provide awesome results and, most importantly, open a new approach toward reconstructing challenging scenes with significant topological changes and deformations. Our source code and the dataset are publicly available at https://github.com/insait-institute/N4DE.
November 2024. https://arxiv.org/abs/2411.15018
778 BillBoard Splatting (BBSplat): Learnable Textured Primitives for Novel View Synthesis David Svitov,Pietro Morerio,Lourdes Agapito,Alessio Del Bue
AbstractWe present billboard Splatting (BBSplat) - a novel approach for 3D scene representation based on textured geometric primitives. BBSplat represents the scene as a set of optimizable textured planar primitives with learnable RGB textures and alpha-maps to control their shape. BBSplat primitives can be used in any Gaussian Splatting pipeline as drop-in replacements for Gaussians. Our method's qualitative and quantitative improvements over 3D and 2D Gaussians are most noticeable when fewer primitives are used, when BBSplat achieves over 1200 FPS. Our novel regularization term encourages textures to have a sparser structure, unlocking an efficient compression that leads to a reduction in storage space of the model. Our experiments show the efficiency of BBSplat on standard datasets of real indoor and outdoor scenes such as Tanks&Temples, DTU, and Mip-NeRF-360. We demonstrate improvements on PSNR, SSIM, and LPIPS metrics compared to the state-of-the-art, especially for the case when fewer primitives are used, which, on the other hand, leads to up to 2 times inference speed improvement for the same rendering quality.
November 2024. https://arxiv.org/abs/2411.08508
777 Sketch-guided Cage-based 3D Gaussian Splatting Deformation Tianhao Xie,Noam Aigerman,Eugene Belilovsky,Tiberiu Popa
Abstract3D Gaussian Splatting (GS) is one of the most promising novel 3D representations that has received great interest in computer graphics and computer vision. While various systems have introduced editing capabilities for 3D GS, such as those guided by text prompts, fine-grained control over deformation remains an open challenge. In this work, we present a novel sketch-guided 3D GS deformation system that allows users to intuitively modify the geometry of a 3D GS model by drawing a silhouette sketch from a single viewpoint. Our approach introduces a new deformation method that combines cage-based deformations with a variant of Neural Jacobian Fields, enabling precise, fine-grained control. Additionally, it leverages large-scale 2D diffusion priors and ControlNet to ensure the generated deformations are semantically plausible. Through a series of experiments, we demonstrate the effectiveness of our method and showcase its ability to animate static 3D GS models as one of its key applications.
November 2024. https://arxiv.org/abs/2411.12168
776 Cinematic Gaussians: Real-Time HDR Radiance Fields with Depth of Field Chao Wang,Krzysztof Wolski,Bernhard Kerbl,Ana Serrano,Mojtaba Bemana,Hans-Peter Seidel,Karol Myszkowski,Thomas Leimk\xc3\xbchler
AbstractRadiance field methods represent the state of the art in reconstructing complex scenes from multi-view photos. However, these reconstructions often suffer from one or both of the following limitations: First, they typically represent scenes in low dynamic range (LDR), which restricts their use to evenly lit environments and hinders immersive viewing experiences. Secondly, their reliance on a pinhole camera model, assuming all scene elements are in focus in the input images, presents practical challenges and complicates refocusing during novel-view synthesis. Addressing these limitations, we present a lightweight method based on 3D Gaussian Splatting that utilizes multi-view LDR images of a scene with varying exposure times, apertures, and focus distances as input to reconstruct a high-dynamic-range (HDR) radiance field. By incorporating analytical convolutions of Gaussians based on a thin-lens camera model as well as a tonemapping module, our reconstructions enable the rendering of HDR content with flexible refocusing capabilities. We demonstrate that our combined treatment of HDR and depth of field facilitates real-time cinematic rendering, outperforming the state of the art.
June 2024. https://arxiv.org/abs/2406.07329
775 Dynamics-Aware Gaussian Splatting Streaming Towards Fast On-the-Fly Training for 4D Reconstruction Zhening Liu,Yingdong Hu,Xinjie Zhang,Jiawei Shao,Zehong Lin,Jun Zhang
AbstractThe recent development of 3D Gaussian Splatting (3DGS) has led to great interest in 4D dynamic spatial reconstruction from multi-view visual inputs. While existing approaches mainly rely on processing full-length multi-view videos for 4D reconstruction, there has been limited exploration of iterative online reconstruction methods that enable on-the-fly training and per-frame streaming. Current 3DGS-based streaming methods treat the Gaussian primitives uniformly and constantly renew the densified Gaussians, thereby overlooking the difference between dynamic and static features and also neglecting the temporal continuity in the scene. To address these limitations, we propose a novel three-stage pipeline for iterative streamable 4D dynamic spatial reconstruction. Our pipeline comprises a selective inheritance stage to preserve temporal continuity, a dynamics-aware shift stage for distinguishing dynamic and static primitives and optimizing their movements, and an error-guided densification stage to accommodate emerging objects. Our method achieves state-of-the-art performance in online 4D reconstruction, demonstrating a 20% improvement in on-the-fly training speed, superior representation quality, and real-time rendering capability. Project page: https://www.liuzhening.top/DASS
November 2024. https://arxiv.org/abs/2411.14847
774 Self-Ensembling Gaussian Splatting for Few-Shot Novel View Synthesis Chen Zhao,Xuan Wang,Tong Zhang,Saqib Javed,Mathieu Salzmann
Abstract3D Gaussian Splatting (3DGS) has demonstrated remarkable effectiveness for novel view synthesis (NVS). However, the 3DGS model tends to overfit when trained with sparse posed views, limiting its generalization ability to novel views. In this paper, we alleviate the overfitting problem, presenting a Self-Ensembling Gaussian Splatting (SE-GS) approach. Our method encompasses a $\mathbf\xce\xa3$-model and a $\mathbf\xce\x94$-model. The $\mathbf\xce\xa3$-model serves as an ensemble of 3DGS models that generates novel-view images during inference. We achieve the self-ensembling by introducing an uncertainty-aware perturbation strategy at the training state. We complement the $\mathbf\xce\xa3$-model with the $\mathbf\xce\x94$-model, which is dynamically perturbed based on the uncertainties of novel-view renderings across different training steps. The perturbation yields diverse temporal samples in the Gaussian parameter space without additional training costs. The geometry of the $\mathbf\xce\xa3$-model is regularized by penalizing discrepancies between the $\mathbf\xce\xa3$-model and these temporal samples. Therefore, our SE-GS conducts an effective and efficient regularization across a large number of 3DGS models, resulting in a robust ensemble, the $\mathbf\xce\xa3$-model. Our experimental results on the LLFF, Mip-NeRF360, DTU, and MVImgNet datasets show that our approach improves NVS quality with few-shot training views, outperforming existing state-of-the-art methods. The code is released at: https://sailor-z.github.io/projects/SEGS.html.
November 2024. https://arxiv.org/abs/2411.00144
773 VisionPAD: A Vision-Centric Pre-training Paradigm for Autonomous Driving Haiming Zhang,Wending Zhou,Yiyao Zhu,Xu Yan,Jiantao Gao,Dongfeng Bai,Yingjie Cai,Bingbing Liu,Shuguang Cui,Zhen Li
AbstractThis paper introduces VisionPAD, a novel self-supervised pre-training paradigm designed for vision-centric algorithms in autonomous driving. In contrast to previous approaches that employ neural rendering with explicit depth supervision, VisionPAD utilizes more efficient 3D Gaussian Splatting to reconstruct multi-view representations using only images as supervision. Specifically, we introduce a self-supervised method for voxel velocity estimation. By warping voxels to adjacent frames and supervising the rendered outputs, the model effectively learns motion cues in the sequential data. Furthermore, we adopt a multi-frame photometric consistency approach to enhance geometric perception. It projects adjacent frames to the current frame based on rendered depths and relative poses, boosting the 3D geometric representation through pure image supervision. Extensive experiments on autonomous driving datasets demonstrate that VisionPAD significantly improves performance in 3D object detection, occupancy prediction and map segmentation, surpassing state-of-the-art pre-training strategies by a considerable margin.
November 2024. https://arxiv.org/abs/2411.14716
772 Unleashing the Potential of Multi-modal Foundation Models and Video Diffusion for 4D Dynamic Physical Scene Simulation Zhuoman Liu,Weicai Ye,Yan Luximon,Pengfei Wan,Di Zhang
AbstractRealistic simulation of dynamic scenes requires accurately capturing diverse material properties and modeling complex object interactions grounded in physical principles. However, existing methods are constrained to basic material types with limited predictable parameters, making them insufficient to represent the complexity of real-world materials. We introduce a novel approach that leverages multi-modal foundation models and video diffusion to achieve enhanced 4D dynamic scene simulation. Our method utilizes multi-modal models to identify material types and initialize material parameters through image queries, while simultaneously inferring 3D Gaussian splats for detailed scene representation. We further refine these material parameters using video diffusion with a differentiable Material Point Method (MPM) and optical flow guidance rather than render loss or Score Distillation Sampling (SDS) loss. This integrated framework enables accurate prediction and realistic simulation of dynamic interactions in real-world scenarios, advancing both accuracy and flexibility in physics-based simulations.
November 2024. https://arxiv.org/abs/2411.14423
771 SplatR : Experience Goal Visual Rearrangement with 3D Gaussian Splatting and Dense Feature Matching Arjun P S,Andrew Melnik,Gora Chand Nandi
AbstractExperience Goal Visual Rearrangement task stands as a foundational challenge within Embodied AI, requiring an agent to construct a robust world model that accurately captures the goal state. The agent uses this world model to restore a shuffled scene to its original configuration, making an accurate representation of the world essential for successfully completing the task. In this work, we present a novel framework that leverages on 3D Gaussian Splatting as a 3D scene representation for experience goal visual rearrangement task. Recent advances in volumetric scene representation like 3D Gaussian Splatting, offer fast rendering of high quality and photo-realistic novel views. Our approach enables the agent to have consistent views of the current and the goal setting of the rearrangement task, which enables the agent to directly compare the goal state and the shuffled state of the world in image space. To compare these views, we propose to use a dense feature matching method with visual features extracted from a foundation model, leveraging its advantages of a more universal feature representation, which facilitates robustness, and generalization. We validate our approach on the AI2-THOR rearrangement challenge benchmark and demonstrate improvements over the current state of the art methods
November 2024. https://arxiv.org/abs/2411.14322
770 FruitNinja: 3D Object Interior Texture Generation with Gaussian Splatting Fangyu Wu,Yuhao Chen
AbstractIn the real world, objects reveal internal textures when sliced or cut, yet this behavior is not well-studied in 3D generation tasks today. For example, slicing a virtual 3D watermelon should reveal flesh and seeds. Given that no available dataset captures an object's full internal structure and collecting data from all slices is impractical, generative methods become the obvious approach. However, current 3D generation and inpainting methods often focus on visible appearance and overlook internal textures. To bridge this gap, we introduce FruitNinja, the first method to generate internal textures for 3D objects undergoing geometric and topological changes. Our approach produces objects via 3D Gaussian Splatting (3DGS) with both surface and interior textures synthesized, enabling real-time slicing and rendering without additional optimization. FruitNinja leverages a pre-trained diffusion model to progressively inpaint cross-sectional views and applies voxel-grid-based smoothing to achieve cohesive textures throughout the object. Our OpaqueAtom GS strategy overcomes 3DGS limitations by employing densely distributed opaque Gaussians, avoiding biases toward larger particles that destabilize training and sharp color transitions for fine-grained textures. Experimental results show that FruitNinja substantially outperforms existing approaches, showcasing unmatched visual quality in real-time rendered internal views across arbitrary geometry manipulations.
November 2024. https://arxiv.org/abs/2411.12089
769 FAST-Splat: Fast, Ambiguity-Free Semantics Transfer in Gaussian Splatting Ola Shorinwa,Jiankai Sun,Mac Schwager
AbstractWe present FAST-Splat for fast, ambiguity-free semantic Gaussian Splatting, which seeks to address the main limitations of existing semantic Gaussian Splatting methods, namely: slow training and rendering speeds; high memory usage; and ambiguous semantic object localization. In deriving FAST-Splat , we formulate open-vocabulary semantic Gaussian Splatting as the problem of extending closed-set semantic distillation to the open-set (open-vocabulary) setting, enabling FAST-Splat to provide precise semantic object localization results, even when prompted with ambiguous user-provided natural-language queries. Further, by exploiting the explicit form of the Gaussian Splatting scene representation to the fullest extent, FAST-Splat retains the remarkable training and rendering speeds of Gaussian Splatting. Specifically, while existing semantic Gaussian Splatting methods distill semantics into a separate neural field or utilize neural models for dimensionality reduction, FAST-Splat directly augments each Gaussian with specific semantic codes, preserving the training, rendering, and memory-usage advantages of Gaussian Splatting over neural field methods. These Gaussian-specific semantic codes, together with a hash-table, enable semantic similarity to be measured with open-vocabulary user prompts and further enable FAST-Splat to respond with unambiguous semantic object labels and 3D masks, unlike prior methods. In experiments, we demonstrate that FAST-Splat is 4x to 6x faster to train with a 13x faster data pre-processing step, achieves between 18x to 75x faster rendering speeds, and requires about 3x smaller GPU memory, compared to the best-competing semantic Gaussian Splatting methods. Further, FAST-Splat achieves relatively similar or better semantic segmentation performance compared to existing methods. After the review period, we will provide links to the project website and the codebase.
November 2024. https://arxiv.org/abs/2411.13753
768 Generating 3D-Consistent Videos from Unposed Internet Photos Gene Chou,Kai Zhang,Sai Bi,Hao Tan,Zexiang Xu,Fujun Luan,Bharath Hariharan,Noah Snavely
AbstractWe address the problem of generating videos from unposed internet photos. A handful of input images serve as keyframes, and our model interpolates between them to simulate a path moving between the cameras. Given random images, a model's ability to capture underlying geometry, recognize scene identity, and relate frames in terms of camera position and orientation reflects a fundamental understanding of 3D structure and scene layout. However, existing video models such as Luma Dream Machine fail at this task. We design a self-supervised method that takes advantage of the consistency of videos and variability of multiview internet photos to train a scalable, 3D-aware video model without any 3D annotations such as camera parameters. We validate that our method outperforms all baselines in terms of geometric and appearance consistency. We also show our model benefits applications that enable camera control, such as 3D Gaussian Splatting. Our results suggest that we can scale up scene-level 3D learning using only 2D data such as videos and multiview internet photos.
November 2024. https://arxiv.org/abs/2411.13549
767 MagicDrive3D: Controllable 3D Generation for Any-View Rendering in Street Scenes Ruiyuan Gao,Kai Chen,Zhihao Li,Lanqing Hong,Zhenguo Li,Qiang Xu
AbstractWhile controllable generative models for images and videos have achieved remarkable success, high-quality models for 3D scenes, particularly in unbounded scenarios like autonomous driving, remain underdeveloped due to high data acquisition costs. In this paper, we introduce MagicDrive3D, a novel pipeline for controllable 3D street scene generation that supports multi-condition control, including BEV maps, 3D objects, and text descriptions. Unlike previous methods that reconstruct before training the generative models, MagicDrive3D first trains a video generation model and then reconstructs from the generated data. This innovative approach enables easily controllable generation and static scene acquisition, resulting in high-quality scene reconstruction. To address the minor errors in generated content, we propose deformable Gaussian splatting with monocular depth initialization and appearance modeling to manage exposure discrepancies across viewpoints. Validated on the nuScenes dataset, MagicDrive3D generates diverse, high-quality 3D driving scenes that support any-view rendering and enhance downstream tasks like BEV segmentation. Our results demonstrate the framework's superior performance, showcasing its potential for autonomous driving simulation and beyond.
May 2024. https://arxiv.org/abs/2405.14475
766 GazeGaussian: High-Fidelity Gaze Redirection with 3D Gaussian Splatting Xiaobao Wei,Peng Chen,Guangyu Li,Ming Lu,Hui Chen,Feng Tian
AbstractGaze estimation encounters generalization challenges when dealing with out-of-distribution data. To address this problem, recent methods use neural radiance fields (NeRF) to generate augmented data. However, existing methods based on NeRF are computationally expensive and lack facial details. 3D Gaussian Splatting (3DGS) has become the prevailing representation of neural fields. While 3DGS has been extensively examined in head avatars, it faces challenges with accurate gaze control and generalization across different subjects. In this work, we propose GazeGaussian, a high-fidelity gaze redirection method that uses a two-stream 3DGS model to represent the face and eye regions separately. By leveraging the unstructured nature of 3DGS, we develop a novel eye representation for rigid eye rotation based on the target gaze direction. To enhance synthesis generalization across various subjects, we integrate an expression-conditional module to guide the neural renderer. Comprehensive experiments show that GazeGaussian outperforms existing methods in rendering speed, gaze redirection accuracy, and facial synthesis across multiple datasets. We also demonstrate that existing gaze estimation methods can leverage GazeGaussian to improve their generalization performance. The code will be available at: https://ucwxb.github.io/GazeGaussian/.
November 2024. https://arxiv.org/abs/2411.12981
765 Video2BEV: Transforming Drone Videos to BEVs for Video-based Geo-localization Hao Ju,Zhedong Zheng
AbstractExisting approaches to drone visual geo-localization predominantly adopt the image-based setting, where a single drone-view snapshot is matched with images from other platforms. Such task formulation, however, underutilizes the inherent video output of the drone and is sensitive to occlusions and environmental constraints. To address these limitations, we formulate a new video-based drone geo-localization task and propose the Video2BEV paradigm. This paradigm transforms the video into a Bird's Eye View (BEV), simplifying the subsequent matching process. In particular, we employ Gaussian Splatting to reconstruct a 3D scene and obtain the BEV projection. Different from the existing transform methods, \eg, polar transform, our BEVs preserve more fine-grained details without significant distortion. To further improve model scalability toward diverse BEVs and satellite figures, our Video2BEV paradigm also incorporates a diffusion-based module for generating hard negative samples, which facilitates discriminative feature learning. To validate our approach, we introduce UniV, a new video-based geo-localization dataset that extends the image-based University-1652 dataset. UniV features flight paths at $30^\circ$ and $45^\circ$ elevation angles with increased frame rates of up to 10 frames per second (FPS). Extensive experiments on the UniV dataset show that our Video2BEV paradigm achieves competitive recall rates and outperforms conventional video-based methods. Compared to other methods, our proposed approach exhibits robustness at lower elevations with more occlusions.
November 2024. https://arxiv.org/abs/2411.13610
764 Next Best Sense: Guiding Vision and Touch with FisherRF for 3D Gaussian Splatting Matthew Strong,Boshu Lei,Aiden Swann,Wen Jiang,Kostas Daniilidis,Monroe Kennedy III
AbstractWe propose a framework for active next best view and touch selection for robotic manipulators using 3D Gaussian Splatting (3DGS). 3DGS is emerging as a useful explicit 3D scene representation for robotics, as it has the ability to represent scenes in a both photorealistic and geometrically accurate manner. However, in real-world, online robotic scenes where the number of views is limited given efficiency requirements, random view selection for 3DGS becomes impractical as views are often overlapping and redundant. We address this issue by proposing an end-to-end online training and active view selection pipeline, which enhances the performance of 3DGS in few-view robotics settings. We first elevate the performance of few-shot 3DGS with a novel semantic depth alignment method using Segment Anything Model 2 (SAM2) that we supplement with Pearson depth and surface normal loss to improve color and depth reconstruction of real-world scenes. We then extend FisherRF, a next-best-view selection method for 3DGS, to select views and touch poses based on depth uncertainty. We perform online view selection on a real robot system during live 3DGS training. We motivate our improvements to few-shot GS scenes, and extend depth-based FisherRF to them, where we demonstrate both qualitative and quantitative improvements on challenging robot scenes. For more information, please see our project page at https://arm.stanford.edu/next-best-sense.
October 2024. https://arxiv.org/abs/2410.04680
763 Enhancing Single Image to 3D Generation using Gaussian Splatting and Hybrid Diffusion Priors Hritam Basak,Hadi Tabatabaee,Shreekant Gayaka,Ming-Feng Li,Xin Yang,Cheng-Hao Kuo,Arnie Sen,Min Sun,Zhaozheng Yin
Abstract3D object generation from a single image involves estimating the full 3D geometry and texture of unseen views from an unposed RGB image captured in the wild. Accurately reconstructing an object's complete 3D structure and texture has numerous applications in real-world scenarios, including robotic manipulation, grasping, 3D scene understanding, and AR/VR. Recent advancements in 3D object generation have introduced techniques that reconstruct an object's 3D shape and texture by optimizing the efficient representation of Gaussian Splatting, guided by pre-trained 2D or 3D diffusion models. However, a notable disparity exists between the training datasets of these models, leading to distinct differences in their outputs. While 2D models generate highly detailed visuals, they lack cross-view consistency in geometry and texture. In contrast, 3D models ensure consistency across different views but often result in overly smooth textures. We propose bridging the gap between 2D and 3D diffusion models to address this limitation by integrating a two-stage frequency-based distillation loss with Gaussian Splatting. Specifically, we leverage geometric priors in the low-frequency spectrum from a 3D diffusion model to maintain consistent geometry and use a 2D diffusion model to refine the fidelity and texture in the high-frequency spectrum of the generated 3D structure, resulting in more detailed and fine-grained outcomes. Our approach enhances geometric consistency and visual quality, outperforming the current SOTA. Additionally, we demonstrate the easy adaptability of our method for efficient object pose estimation and tracking.
October 2024. https://arxiv.org/abs/2410.09467
762 PR-ENDO: Physically Based Relightable Gaussian Splatting for Endoscopy Joanna Kaleta,Weronika Smolak-Dy\xc5\xbcewska,Dawid Malarz,Diego Dall'Alba,Przemys\xc5\x82aw Korzeniowski,Przemys\xc5\x82aw Spurek
AbstractEndoscopic procedures are crucial for colorectal cancer diagnosis, and three-dimensional reconstruction of the environment for real-time novel-view synthesis can significantly enhance diagnosis. We present PR-ENDO, a framework that leverages 3D Gaussian Splatting within a physically based, relightable model tailored for the complex acquisition conditions in endoscopy, such as restricted camera rotations and strong view-dependent illumination. By exploiting the connection between the camera and light source, our approach introduces a relighting model to capture the intricate interactions between light and tissue using physically based rendering and MLP. Existing methods often produce artifacts and inconsistencies under these conditions, which PR-ENDO overcomes by incorporating a specialized diffuse MLP that utilizes light angles and normal vectors, achieving stable reconstructions even with limited training camera rotations. We benchmarked our framework using a publicly available dataset and a newly introduced dataset with wider camera rotations. Our methods demonstrated superior image quality compared to baseline approaches.
November 2024. https://arxiv.org/abs/2411.12510
761 Automated 3D Physical Simulation of Open-world Scene with Gaussian Splatting Haoyu Zhao,Hao Wang,Xingyue Zhao,Hongqiu Wang,Zhiyu Wu,Chengjiang Long,Hua Zou
AbstractRecent advancements in 3D generation models have opened new possibilities for simulating dynamic 3D object movements and customizing behaviors, yet creating this content remains challenging. Current methods often require manual assignment of precise physical properties for simulations or rely on video generation models to predict them, which is computationally intensive. In this paper, we rethink the usage of multi-modal large language model (MLLM) in physics-based simulation, and present Sim Anything, a physics-based approach that endows static 3D objects with interactive dynamics. We begin with detailed scene reconstruction and object-level 3D open-vocabulary segmentation, progressing to multi-view image in-painting. Inspired by human visual reasoning, we propose MLLM-based Physical Property Perception (MLLM-P3) to predict mean physical properties of objects in a zero-shot manner. Based on the mean values and the object's geometry, the Material Property Distribution Prediction model (MPDP) model then estimates the full distribution, reformulating the problem as probability distribution estimation to reduce computational costs. Finally, we simulate objects in an open-world scene with particles sampled via the Physical-Geometric Adaptive Sampling (PGAS) strategy, efficiently capturing complex deformations and significantly reducing computational costs. Extensive experiments and user studies demonstrate our Sim Anything achieves more realistic motion than state-of-the-art methods within 2 minutes on a single GPU.
November 2024. https://arxiv.org/abs/2411.12789
760 3D-Consistent Human Avatars with Sparse Inputs via Gaussian Splatting and Contrastive Learning Haoyu Zhao,Hao Wang,Chen Yang,Wei Shen
AbstractExisting approaches for human avatar generation--both NeRF-based and 3D Gaussian Splatting (3DGS) based--struggle with maintaining 3D consistency and exhibit degraded detail reconstruction, particularly when training with sparse inputs. To address this challenge, we propose CHASE, a novel framework that achieves dense-input-level performance using only sparse inputs through two key innovations: cross-pose intrinsic 3D consistency supervision and 3D geometry contrastive learning. Building upon prior skeleton-driven approaches that combine rigid deformation with non-rigid cloth dynamics, we first establish baseline avatars with fundamental 3D consistency. To enhance 3D consistency under sparse inputs, we introduce a Dynamic Avatar Adjustment (DAA) module, which refines deformed Gaussians by leveraging similar poses from the training set. By minimizing the rendering discrepancy between adjusted Gaussians and reference poses, DAA provides additional supervision for avatar reconstruction. We further maintain global 3D consistency through a novel geometry-aware contrastive learning strategy. While designed for sparse inputs, CHASE surpasses state-of-the-art methods across both full and sparse settings on ZJU-MoCap and H36M datasets, demonstrating that our enhanced 3D consistency leads to superior rendering quality.
August 2024. https://arxiv.org/abs/2408.09663
759 Topology-aware Human Avatars with Semantically-guided Gaussian Splatting Haoyu Zhao,Chen Yang,Hao Wang,Xingyue Zhao,Wei Shen
AbstractReconstructing photo-realistic and topology-aware animatable human avatars from monocular videos remains challenging in computer vision and graphics. Recently, methods using 3D Gaussians to represent the human body have emerged, offering faster optimization and real-time rendering. However, due to ignoring the crucial role of human body semantic information which represents the explicit topological and intrinsic structure within human body, they fail to achieve fine-detail reconstruction of human avatars. To address this issue, we propose SG-GS, which uses semantics-embedded 3D Gaussians, skeleton-driven rigid deformation, and non-rigid cloth dynamics deformation to create photo-realistic human avatars. We then design a Semantic Human-Body Annotator (SHA) which utilizes SMPL's semantic prior for efficient body part semantic labeling. The generated labels are used to guide the optimization of semantic attributes of Gaussian. To capture the explicit topological structure of the human body, we employ a 3D network that integrates both topological and geometric associations for human avatar deformation. We further implement three key strategies to enhance the semantic accuracy of 3D Gaussians and rendering quality: semantic projection with 2D regularization, semantic-guided density regularization and semantic-aware regularization with neighborhood consistency. Extensive experiments demonstrate that SG-GS achieves state-of-the-art geometry and appearance reconstruction performance.
August 2024. https://arxiv.org/abs/2408.09665
758 Gradient-Weighted Feature Back-Projection: A Fast Alternative to Feature Distillation in 3D Gaussian Splatting Joji Joseph,Bharadwaj Amrutur,Shalabh Bhatnagar
AbstractWe introduce a training-free method for feature field rendering in Gaussian splatting. Our approach back-projects 2D features into pre-trained 3D Gaussians, using a weighted sum based on each Gaussian's influence in the final rendering. While most training-based feature field rendering methods excel at 2D segmentation but perform poorly at 3D segmentation without post-processing, our method achieves high-quality results in both 2D and 3D segmentation. Experimental results demonstrate that our approach is fast, scalable, and offers performance comparable to training-based methods.
November 2024. https://arxiv.org/abs/2411.15193
757 Mini-Splatting2: Building 360 Scenes within Minutes via Aggressive Gaussian Densification Guangchi Fang,Bing Wang
AbstractIn this study, we explore the essential challenge of fast scene optimization for Gaussian Splatting. Through a thorough analysis of the geometry modeling process, we reveal that dense point clouds can be effectively reconstructed early in optimization through Gaussian representations. This insight leads to our approach of aggressive Gaussian densification, which provides a more efficient alternative to conventional progressive densification methods. By significantly increasing the number of critical Gaussians, we enhance the model capacity to capture dense scene geometry at the early stage of optimization. This strategy is seamlessly integrated into the Mini-Splatting densification and simplification framework, enabling rapid convergence without compromising quality. Additionally, we introduce visibility culling within Gaussian Splatting, leveraging per-view Gaussian importance as precomputed visibility to accelerate the optimization process. Our Mini-Splatting2 achieves a balanced trade-off among optimization time, the number of Gaussians, and rendering quality, establishing a strong baseline for future Gaussian-Splatting-based works. Our work sets the stage for more efficient, high-quality 3D scene modeling in real-world applications, and the code will be made available no matter acceptance.
November 2024. https://arxiv.org/abs/2411.12788
756 RayFormer: Improving Query-Based Multi-Camera 3D Object Detection via Ray-Centric Strategies Xiaomeng Chu,Jiajun Deng,Guoliang You,Yifan Duan,Yao Li,Yanyong Zhang
AbstractThe recent advances in query-based multi-camera 3D object detection are featured by initializing object queries in the 3D space, and then sampling features from perspective-view images to perform multi-round query refinement. In such a framework, query points near the same camera ray are likely to sample similar features from very close pixels, resulting in ambiguous query features and degraded detection accuracy. To this end, we introduce RayFormer, a camera-ray-inspired query-based 3D object detector that aligns the initialization and feature extraction of object queries with the optical characteristics of cameras. Specifically, RayFormer transforms perspective-view image features into bird's eye view (BEV) via the lift-splat-shoot method and segments the BEV map to sectors based on the camera rays. Object queries are uniformly and sparsely initialized along each camera ray, facilitating the projection of different queries onto different areas in the image to extract distinct features. Besides, we leverage the instance information of images to supplement the uniformly initialized object queries by further involving additional queries along the ray from 2D object detection boxes. To extract unique object-level features that cater to distinct queries, we design a ray sampling method that suitably organizes the distribution of feature sampling points on both images and bird's eye view. Extensive experiments are conducted on the nuScenes dataset to validate our proposed ray-inspired model design. The proposed RayFormer achieves superior performance of 55.5% mAP and 63.3% NDS, respectively.
July 2024. https://arxiv.org/abs/2407.14923
755 LSSInst: Improving Geometric Modeling in LSS-Based BEV Perception with Instance Representation Weijie Ma,Jingwei Jiang,Yang Yang,Zehui Chen,Hao Chen
AbstractWith the attention gained by camera-only 3D object detection in autonomous driving, methods based on Bird-Eye-View (BEV) representation especially derived from the forward view transformation paradigm, i.e., lift-splat-shoot (LSS), have recently seen significant progress. The BEV representation formulated by the frustum based on depth distribution prediction is ideal for learning the road structure and scene layout from multi-view images. However, to retain computational efficiency, the compressed BEV representation such as in resolution and axis is inevitably weak in retaining the individual geometric details, undermining the methodological generality and applicability. With this in mind, to compensate for the missing details and utilize multi-view geometry constraints, we propose LSSInst, a two-stage object detector incorporating BEV and instance representations in tandem. The proposed detector exploits fine-grained pixel-level features that can be flexibly integrated into existing LSS-based BEV networks. Having said that, due to the inherent gap between two representation spaces, we design the instance adaptor for the BEV-to-instance semantic coherence rather than pass the proposal naively. Extensive experiments demonstrated that our proposed framework is of excellent generalization ability and performance, which boosts the performances of modern LSS-based BEV perception methods without bells and whistles and outperforms current LSS-based state-of-the-art works on the large-scale nuScenes benchmark.
November 2024. https://arxiv.org/abs/2411.06173
754 LiV-GS: LiDAR-Vision Integration for 3D Gaussian Splatting SLAM in Outdoor Environments Renxiang Xiao,Wei Liu,Yushuai Chen,Liang Hu
AbstractWe present LiV-GS, a LiDAR-visual SLAM system in outdoor environments that leverages 3D Gaussian as a differentiable spatial representation. Notably, LiV-GS is the first method that directly aligns discrete and sparse LiDAR data with continuous differentiable Gaussian maps in large-scale outdoor scenes, overcoming the limitation of fixed resolution in traditional LiDAR mapping. The system aligns point clouds with Gaussian maps using shared covariance attributes for front-end tracking and integrates the normal orientation into the loss function to refines the Gaussian map. To reliably and stably update Gaussians outside the LiDAR field of view, we introduce a novel conditional Gaussian constraint that aligns these Gaussians closely with the nearest reliable ones. The targeted adjustment enables LiV-GS to achieve fast and accurate mapping with novel view synthesis at a rate of 7.98 FPS. Extensive comparative experiments demonstrate LiV-GS's superior performance in SLAM, image rendering and mapping. The successful cross-modal radar-LiDAR localization highlights the potential of LiV-GS for applications in cross-modal semantic positioning and object segmentation with Gaussian maps.
November 2024. https://arxiv.org/abs/2411.12185
753 PLA4D: Pixel-Level Alignments for Text-to-4D Gaussian Splatting Qiaowei Miao,JinSheng Quan,Kehan Li,Yawei Luo
AbstractPrevious text-to-4D methods have leveraged multiple Score Distillation Sampling (SDS) techniques, combining motion priors from video-based diffusion models (DMs) with geometric priors from multiview DMs to implicitly guide 4D renderings. However, differences in these priors result in conflicting gradient directions during optimization, causing trade-offs between motion fidelity and geometry accuracy, and requiring substantial optimization time to reconcile the models. In this paper, we introduce \textbf{P}ixel-\textbf{L}evel \textbf{A}lignment for text-driven \textbf{4D} Gaussian splatting (PLA4D) to resolve this motion-geometry conflict. PLA4D provides an anchor reference, i.e., text-generated video, to align the rendering process conditioned by different DMs in pixel space. For static alignment, our approach introduces a focal alignment method and Gaussian-Mesh contrastive learning to iteratively adjust focal lengths and provide explicit geometric priors at each timestep. At the dynamic level, a motion alignment technique and T-MV refinement method are employed to enforce both pose alignment and motion continuity across unknown viewpoints, ensuring intrinsic geometric consistency across views. With such pixel-level multi-DM alignment, our PLA4D framework is able to generate 4D objects with superior geometric, motion, and semantic consistency. Fully implemented with open-source tools, PLA4D offers an efficient and accessible solution for high-quality 4D digital content creation with significantly reduced generation time.
May 2024. https://arxiv.org/abs/2405.19957
752 RoboGSim: A Real2Sim2Real Robotic Gaussian Splatting Simulator Xinhai Li,Jialin Li,Ziheng Zhang,Rui Zhang,Fan Jia,Tiancai Wang,Haoqiang Fan,Kuo-Kun Tseng,Ruiping Wang
AbstractEfficient acquisition of real-world embodied data has been increasingly critical. However, large-scale demonstrations captured by remote operation tend to take extremely high costs and fail to scale up the data size in an efficient manner. Sampling the episodes under a simulated environment is a promising way for large-scale collection while existing simulators fail to high-fidelity modeling on texture and physics. To address these limitations, we introduce the RoboGSim, a real2sim2real robotic simulator, powered by 3D Gaussian Splatting and the physics engine. RoboGSim mainly includes four parts: Gaussian Reconstructor, Digital Twins Builder, Scene Composer, and Interactive Engine. It can synthesize the simulated data with novel views, objects, trajectories, and scenes. RoboGSim also provides an online, reproducible, and safe evaluation for different manipulation policies. The real2sim and sim2real transfer experiments show a high consistency in the texture and physics. Moreover, the effectiveness of synthetic data is validated under the real-world manipulated tasks. We hope RoboGSim serves as a closed-loop simulator for fair comparison on policy learning. More information can be found on our project page https://robogsim.github.io/ .
November 2024. https://arxiv.org/abs/2411.11839
751 TimeFormer: Capturing Temporal Relationships of Deformable 3D Gaussians for Robust Reconstruction DaDong Jiang,Zhihui Ke,Xiaobo Zhou,Zhi Hou,Xianghui Yang,Wenbo Hu,Tie Qiu,Chunchao Guo
AbstractDynamic scene reconstruction is a long-term challenge in 3D vision. Recent methods extend 3D Gaussian Splatting to dynamic scenes via additional deformation fields and apply explicit constraints like motion flow to guide the deformation. However, they learn motion changes from individual timestamps independently, making it challenging to reconstruct complex scenes, particularly when dealing with violent movement, extreme-shaped geometries, or reflective surfaces. To address the above issue, we design a plug-and-play module called TimeFormer to enable existing deformable 3D Gaussians reconstruction methods with the ability to implicitly model motion patterns from a learning perspective. Specifically, TimeFormer includes a Cross-Temporal Transformer Encoder, which adaptively learns the temporal relationships of deformable 3D Gaussians. Furthermore, we propose a two-stream optimization strategy that transfers the motion knowledge learned from TimeFormer to the base stream during the training phase. This allows us to remove TimeFormer during inference, thereby preserving the original rendering speed. Extensive experiments in the multi-view and monocular dynamic scenes validate qualitative and quantitative improvement brought by TimeFormer. Project Page: https://patrickddj.github.io/TimeFormer/
November 2024. https://arxiv.org/abs/2411.11941
750 BrightDreamer: Generic 3D Gaussian Generative Framework for Fast Text-to-3D Synthesis Lutao Jiang,Xu Zheng,Yuanhuiyi Lyu,Jiazhou Zhou,Lin Wang
AbstractText-to-3D synthesis has recently seen intriguing advances by combining the text-to-image priors with 3D representation methods, e.g., 3D Gaussian Splatting (3D GS), via Score Distillation Sampling (SDS). However, a hurdle of existing methods is the low efficiency, per-prompt optimization for a single 3D object. Therefore, it is imperative for a paradigm shift from per-prompt optimization to feed-forward generation for any unseen text prompts, which yet remains challenging. An obstacle is how to directly generate a set of millions of 3D Gaussians to represent a 3D object. This paper presents BrightDreamer, an end-to-end feed-forward approach that can achieve generalizable and fast (77 ms) text-to-3D generation. Our key idea is to formulate the generation process as estimating the 3D deformation from an anchor shape with predefined positions. For this, we first propose a Text-guided Shape Deformation (TSD) network to predict the deformed shape and its new positions, used as the centers (one attribute) of 3D Gaussians. To estimate the other four attributes (i.e., scaling, rotation, opacity, and SH), we then design a novel Text-guided Triplane Generator (TTG) to generate a triplane representation for a 3D object. The center of each Gaussian enables us to transform the spatial feature into the four attributes. The generated 3D Gaussians can be finally rendered at 705 frames per second. Extensive experiments demonstrate the superiority of our method over existing methods. Also, BrightDreamer possesses a strong semantic understanding capability even for complex text prompts. The code is available in the project page.
March 2024. https://arxiv.org/abs/2403.11273
749 GPS-Gaussian+: Generalizable Pixel-wise 3D Gaussian Splatting for Real-Time Human-Scene Rendering from Sparse Views Boyao Zhou,Shunyuan Zheng,Hanzhang Tu,Ruizhi Shao,Boning Liu,Shengping Zhang,Liqiang Nie,Yebin Liu
AbstractDifferentiable rendering techniques have recently shown promising results for free-viewpoint video synthesis of characters. However, such methods, either Gaussian Splatting or neural implicit rendering, typically necessitate per-subject optimization which does not meet the requirement of real-time rendering in an interactive application. We propose a generalizable Gaussian Splatting approach for high-resolution image rendering under a sparse-view camera setting. To this end, we introduce Gaussian parameter maps defined on the source views and directly regress Gaussian properties for instant novel view synthesis without any fine-tuning or optimization. We train our Gaussian parameter regression module on human-only data or human-scene data, jointly with a depth estimation module to lift 2D parameter maps to 3D space. The proposed framework is fully differentiable with both depth and rendering supervision or with only rendering supervision. We further introduce a regularization term and an epipolar attention mechanism to preserve geometry consistency between two source views, especially when neglecting depth supervision. Experiments on several datasets demonstrate that our method outperforms state-of-the-art methods while achieving an exceeding rendering speed.
November 2024. https://arxiv.org/abs/2411.11363
748 DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes Chensheng Peng,Chengwei Zhang,Yixiao Wang,Chenfeng Xu,Yichen Xie,Wenzhao Zheng,Kurt Keutzer,Masayoshi Tomizuka,Wei Zhan
AbstractWe present DeSiRe-GS, a self-supervised gaussian splatting representation, enabling effective static-dynamic decomposition and high-fidelity surface reconstruction in complex driving scenarios. Our approach employs a two-stage optimization pipeline of dynamic street Gaussians. In the first stage, we extract 2D motion masks based on the observation that 3D Gaussian Splatting inherently can reconstruct only the static regions in dynamic environments. These extracted 2D motion priors are then mapped into the Gaussian space in a differentiable manner, leveraging an efficient formulation of dynamic Gaussians in the second stage. Combined with the introduced geometric regularizations, our method are able to address the over-fitting issues caused by data sparsity in autonomous driving, reconstructing physically plausible Gaussians that align with object surfaces rather than floating in air. Furthermore, we introduce temporal cross-view consistency to ensure coherence across time and viewpoints, resulting in high-quality surface reconstruction. Comprehensive experiments demonstrate the efficiency and effectiveness of DeSiRe-GS, surpassing prior self-supervised arts and achieving accuracy comparable to methods relying on external 3D bounding box annotations. Code is available at \url{https://github.com/chengweialan/DeSiRe-GS}
November 2024. https://arxiv.org/abs/2411.11921
747 VeGaS: Video Gaussian Splatting Weronika Smolak-Dy\xc5\xbcewska,Dawid Malarz,Kornel Howil,Jan Kaczmarczyk,Marcin Mazur,Przemys\xc5\x82aw Spurek
AbstractImplicit Neural Representations (INRs) employ neural networks to approximate discrete data as continuous functions. In the context of video data, such models can be utilized to transform the coordinates of pixel locations along with frame occurrence times (or indices) into RGB color values. Although INRs facilitate effective compression, they are unsuitable for editing purposes. One potential solution is to use a 3D Gaussian Splatting (3DGS) based model, such as the Video Gaussian Representation (VGR), which is capable of encoding video as a multitude of 3D Gaussians and is applicable for numerous video processing operations, including editing. Nevertheless, in this case, the capacity for modification is constrained to a limited set of basic transformations. To address this issue, we introduce the Video Gaussian Splatting (VeGaS) model, which enables realistic modifications of video data. To construct VeGaS, we propose a novel family of Folded-Gaussian distributions designed to capture nonlinear dynamics in a video stream and model consecutive frames by 2D Gaussians obtained as respective conditional distributions. Our experiments demonstrate that VeGaS outperforms state-of-the-art solutions in frame reconstruction tasks and allows realistic modifications of video data. The code is available at: https://github.com/gmum/VeGaS.
November 2024. https://arxiv.org/abs/2411.11024
746 Direct and Explicit 3D Generation from a Single Image Haoyu Wu,Meher Gitika Karumuri,Chuhang Zou,Seungbae Bang,Yuelong Li,Dimitris Samaras,Sunil Hadap
AbstractCurrent image-to-3D approaches suffer from high computational costs and lack scalability for high-resolution outputs. In contrast, we introduce a novel framework to directly generate explicit surface geometry and texture using multi-view 2D depth and RGB images along with 3D Gaussian features using a repurposed Stable Diffusion model. We introduce a depth branch into U-Net for efficient and high quality multi-view, cross-domain generation and incorporate epipolar attention into the latent-to-pixel decoder for pixel-level multi-view consistency. By back-projecting the generated depth pixels into 3D space, we create a structured 3D representation that can be either rendered via Gaussian splatting or extracted to high-quality meshes, thereby leveraging additional novel view synthesis loss to further improve our performance. Extensive experiments demonstrate that our method surpasses existing baselines in geometry and texture quality while achieving significantly faster generation time.
November 2024. https://arxiv.org/abs/2411.10947
745 DGS-SLAM: Gaussian Splatting SLAM in Dynamic Environment Mangyu Kong,Jaewon Lee,Seongwon Lee,Euntai Kim
AbstractWe introduce Dynamic Gaussian Splatting SLAM (DGS-SLAM), the first dynamic SLAM framework built on the foundation of Gaussian Splatting. While recent advancements in dense SLAM have leveraged Gaussian Splatting to enhance scene representation, most approaches assume a static environment, making them vulnerable to photometric and geometric inconsistencies caused by dynamic objects. To address these challenges, we integrate Gaussian Splatting SLAM with a robust filtering process to handle dynamic objects throughout the entire pipeline, including Gaussian insertion and keyframe selection. Within this framework, to further improve the accuracy of dynamic object removal, we introduce a robust mask generation method that enforces photometric consistency across keyframes, reducing noise from inaccurate segmentation and artifacts such as shadows. Additionally, we propose the loop-aware window selection mechanism, which utilizes unique keyframe IDs of 3D Gaussians to detect loops between the current and past frames, facilitating joint optimization of the current camera poses and the Gaussian map. DGS-SLAM achieves state-of-the-art performance in both camera tracking and novel view synthesis on various dynamic SLAM benchmarks, proving its effectiveness in handling real-world dynamic scenes.
November 2024. https://arxiv.org/abs/2411.10722
744 SPARS3R: Semantic Prior Alignment and Regularization for Sparse 3D Reconstruction Yutao Tang,Yuxiang Guo,Deming Li,Cheng Peng
AbstractRecent efforts in Gaussian-Splat-based Novel View Synthesis can achieve photorealistic rendering; however, such capability is limited in sparse-view scenarios due to sparse initialization and over-fitting floaters. Recent progress in depth estimation and alignment can provide dense point cloud with few views; however, the resulting pose accuracy is suboptimal. In this work, we present SPARS3R, which combines the advantages of accurate pose estimation from Structure-from-Motion and dense point cloud from depth estimation. To this end, SPARS3R first performs a Global Fusion Alignment process that maps a prior dense point cloud to a sparse point cloud from Structure-from-Motion based on triangulated correspondences. RANSAC is applied during this process to distinguish inliers and outliers. SPARS3R then performs a second, Semantic Outlier Alignment step, which extracts semantically coherent regions around the outliers and performs local alignment in these regions. Along with several improvements in the evaluation process, we demonstrate that SPARS3R can achieve photorealistic rendering with sparse images and significantly outperforms existing approaches.
November 2024. https://arxiv.org/abs/2411.12592
743 The Oxford Spires Dataset: Benchmarking Large-Scale LiDAR-Visual Localisation, Reconstruction and Radiance Field Methods Yifu Tao,Miguel \xc3\x81ngel Mu\xc3\xb1oz-Ba\xc3\xb1\xc3\xb3n,Lintong Zhang,Jiahao Wang,Lanke Frank Tarimo Fu,Maurice Fallon
AbstractThis paper introduces a large-scale multi-modal dataset captured in and around well-known landmarks in Oxford using a custom-built multi-sensor perception unit as well as a millimetre-accurate map from a Terrestrial LiDAR Scanner (TLS). The perception unit includes three synchronised global shutter colour cameras, an automotive 3D LiDAR scanner, and an inertial sensor - all precisely calibrated. We also establish benchmarks for tasks involving localisation, reconstruction, and novel-view synthesis, which enable the evaluation of Simultaneous Localisation and Mapping (SLAM) methods, Structure-from-Motion (SfM) and Multi-view Stereo (MVS) methods as well as radiance field methods such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting. To evaluate 3D reconstruction the TLS 3D models are used as ground truth. Localisation ground truth is computed by registering the mobile LiDAR scans to the TLS 3D models. Radiance field methods are evaluated not only with poses sampled from the input trajectory, but also from viewpoints that are from trajectories which are distant from the training poses. Our evaluation demonstrates a key limitation of state-of-the-art radiance field methods: we show that they tend to overfit to the training poses/images and do not generalise well to out-of-sequence poses. They also underperform in 3D reconstruction compared to MVS systems using the same visual inputs. Our dataset and benchmarks are intended to facilitate better integration of radiance field methods and SLAM systems. The raw and processed data, along with software for parsing and evaluation, can be accessed at https://dynamic.robots.ox.ac.uk/datasets/oxford-spires/.
November 2024. https://arxiv.org/abs/2411.10546
742 USP-Gaussian: Unifying Spike-based Image Reconstruction, Pose Correction and Gaussian Splatting Kang Chen,Jiyuan Zhang,Zecheng Hao,Yajing Zheng,Tiejun Huang,Zhaofei Yu
AbstractSpike cameras, as an innovative neuromorphic camera that captures scenes with the 0-1 bit stream at 40 kHz, are increasingly employed for the 3D reconstruction task via Neural Radiance Fields (NeRF) or 3D Gaussian Splatting (3DGS). Previous spike-based 3D reconstruction approaches often employ a casecased pipeline: starting with high-quality image reconstruction from spike streams based on established spike-to-image reconstruction algorithms, then progressing to camera pose estimation and 3D reconstruction. However, this cascaded approach suffers from substantial cumulative errors, where quality limitations of initial image reconstructions negatively impact pose estimation, ultimately degrading the fidelity of the 3D reconstruction. To address these issues, we propose a synergistic optimization framework, \textbf{USP-Gaussian}, that unifies spike-based image reconstruction, pose correction, and Gaussian splatting into an end-to-end framework. Leveraging the multi-view consistency afforded by 3DGS and the motion capture capability of the spike camera, our framework enables a joint iterative optimization that seamlessly integrates information between the spike-to-image network and 3DGS. Experiments on synthetic datasets with accurate poses demonstrate that our method surpasses previous approaches by effectively eliminating cascading errors. Moreover, we integrate pose optimization to achieve robust 3D reconstruction in real-world scenarios with inaccurate initial poses, outperforming alternative methods by effectively reducing noise and preserving fine texture details. Our code, data and trained models will be available at \url{https://github.com/chenkang455/USP-Gaussian}.
November 2024. https://arxiv.org/abs/2411.10504
741 GSFusion: Online RGB-D Mapping Where Gaussian Splatting Meets TSDF Fusion Jiaxin Wei,Stefan Leutenegger
AbstractTraditional volumetric fusion algorithms preserve the spatial structure of 3D scenes, which is beneficial for many tasks in computer vision and robotics. However, they often lack realism in terms of visualization. Emerging 3D Gaussian splatting bridges this gap, but existing Gaussian-based reconstruction methods often suffer from artifacts and inconsistencies with the underlying 3D structure, and struggle with real-time optimization, unable to provide users with immediate feedback in high quality. One of the bottlenecks arises from the massive amount of Gaussian parameters that need to be updated during optimization. Instead of using 3D Gaussian as a standalone map representation, we incorporate it into a volumetric mapping system to take advantage of geometric information and propose to use a quadtree data structure on images to drastically reduce the number of splats initialized. In this way, we simultaneously generate a compact 3D Gaussian map with fewer artifacts and a volumetric map on the fly. Our method, GSFusion, significantly enhances computational efficiency without sacrificing rendering quality, as demonstrated on both synthetic and real datasets. Code will be available at https://github.com/goldoak/GSFusion.
August 2024. https://arxiv.org/abs/2408.12677
740 Efficient Density Control for 3D Gaussian Splatting Xiaobin Deng,Changyu Diao,Min Li,Ruohan Yu,Duanqing Xu
Abstract3D Gaussian Splatting (3DGS) excels in novel view synthesis, balancing advanced rendering quality with real-time performance. However, in trained scenes, a large number of Gaussians with low opacity significantly increase rendering costs. This issue arises due to flaws in the split and clone operations during the densification process, which lead to extensive Gaussian overlap and subsequent opacity reduction. To enhance the efficiency of Gaussian utilization, we improve the adaptive density control of 3DGS. First, we introduce a more efficient long-axis split operation to replace the original clone and split, which mitigates Gaussian overlap and improves densification efficiency.Second, we propose a simple adaptive pruning technique to reduce the number of low-opacity Gaussians. Finally, by dynamically lowering the splitting threshold and applying importance weighting, the efficiency of Gaussian utilization is further improved.We evaluate our proposed method on various challenging real-world datasets. Experimental results show that our Efficient Density Control (EDC) can enhance both the rendering speed and quality.
November 2024. https://arxiv.org/abs/2411.10133
739 GSEditPro: 3D Gaussian Splatting Editing with Attention-based Progressive Localization Yanhao Sun,RunZe Tian,Xiao Han,XinYao Liu,Yan Zhang,Kai Xu
AbstractWith the emergence of large-scale Text-to-Image(T2I) models and implicit 3D representations like Neural Radiance Fields (NeRF), many text-driven generative editing methods based on NeRF have appeared. However, the implicit encoding of geometric and textural information poses challenges in accurately locating and controlling objects during editing. Recently, significant advancements have been made in the editing methods of 3D Gaussian Splatting, a real-time rendering technology that relies on explicit representation. However, these methods still suffer from issues including inaccurate localization and limited manipulation over editing. To tackle these challenges, we propose GSEditPro, a novel 3D scene editing framework which allows users to perform various creative and precise editing using text prompts only. Leveraging the explicit nature of the 3D Gaussian distribution, we introduce an attention-based progressive localization module to add semantic labels to each Gaussian during rendering. This enables precise localization on editing areas by classifying Gaussians based on their relevance to the editing prompts derived from cross-attention layers of the T2I model. Furthermore, we present an innovative editing optimization method based on 3D Gaussian Splatting, obtaining stable and refined editing results through the guidance of Score Distillation Sampling and pseudo ground truth. We prove the efficacy of our method through extensive experiments.
November 2024. https://arxiv.org/abs/2411.10033
738 3D-GSW: 3D Gaussian Splatting for Robust Watermarking Youngdong Jang,Hyunje Park,Feng Yang,Heeju Ko,Euijin Choo,Sangpil Kim
AbstractAs 3D Gaussian Splatting (3D-GS) gains significant attention and its commercial usage increases, the need for watermarking technologies to prevent unauthorized use of the 3D-GS models and rendered images has become increasingly important. In this paper, we introduce a robust watermarking method for 3D-GS that secures ownership of both the model and its rendered images. Our proposed method remains robust against distortions in rendered images and model attacks while maintaining high rendering quality. To achieve these objectives, we present Frequency-Guided Densification (FGD), which removes 3D Gaussians based on their contribution to rendering quality, enhancing real-time rendering and the robustness of the message. FGD utilizes Discrete Fourier Transform to split 3D Gaussians in high-frequency areas, improving rendering quality. Furthermore, we employ a gradient mask for 3D Gaussians and design a wavelet-subband loss to enhance rendering quality. Our experiments show that our method embeds the message in the rendered images invisibly and robustly against various attacks, including model distortion. Our method achieves state-of-the-art performance.
September 2024. https://arxiv.org/abs/2409.13222
737 GSORB-SLAM: Gaussian Splatting SLAM benefits from ORB features and Transmittance information Wancai Zheng,Xinyi Yu,Jintao Rong,Linlin Ou,Yan Wei,Libo Zhou
AbstractThe emergence of 3D Gaussian Splatting (3DGS) has recently sparked a renewed wave of dense visual SLAM research. However, current methods face challenges such as sensitivity to artifacts and noise, sub-optimal selection of training viewpoints, and a lack of light global optimization. In this paper, we propose a dense SLAM system that tightly couples 3DGS with ORB features. We design a joint optimization approach for robust tracking and effectively reducing the impact of noise and artifacts. This involves combining novel geometric observations, derived from accumulated transmittance, with ORB features extracted from pixel data. Furthermore, to improve mapping quality, we propose an adaptive Gaussian expansion and regularization method that enables Gaussian primitives to represent the scene compactly. This is coupled with a viewpoint selection strategy based on the hybrid graph to mitigate over-fitting effects and enhance convergence quality. Finally, our approach achieves compact and high-quality scene representations and accurate localization. GSORB-SLAM has been evaluated on different datasets, demonstrating outstanding performance. The code will be available.
October 2024. https://arxiv.org/abs/2410.11356
736 GGAvatar: Reconstructing Garment-Separated 3D Gaussian Splatting Avatars from Monocular Video Jingxuan Chen
AbstractAvatar modelling has broad applications in human animation and virtual try-ons. Recent advancements in this field have focused on high-quality and comprehensive human reconstruction but often overlook the separation of clothing from the body. To bridge this gap, this paper introduces GGAvatar (Garment-separated 3D Gaussian Splatting Avatar), which relies on monocular videos. Through advanced parameterized templates and unique phased training, this model effectively achieves decoupled, editable, and realistic reconstruction of clothed humans. Comparative evaluations with other costly models confirm GGAvatar's superior quality and efficiency in modelling both clothed humans and separable garments. The paper also showcases applications in clothing editing, as illustrated in Figure 1, highlighting the model's benefits and the advantages of effective disentanglement. The code is available at https://github.com/J-X-Chen/GGAvatar/.
November 2024. https://arxiv.org/abs/2411.09952
735 GSGAN: Adversarial Learning for Hierarchical Generation of 3D Gaussian Splats Sangeek Hyun,Jae-Pil Heo
AbstractMost advances in 3D Generative Adversarial Networks (3D GANs) largely depend on ray casting-based volume rendering, which incurs demanding rendering costs. One promising alternative is rasterization-based 3D Gaussian Splatting (3D-GS), providing a much faster rendering speed and explicit 3D representation. In this paper, we exploit Gaussian as a 3D representation for 3D GANs by leveraging its efficient and explicit characteristics. However, in an adversarial framework, we observe that a na\xc3\xafve generator architecture suffers from training instability and lacks the capability to adjust the scale of Gaussians. This leads to model divergence and visual artifacts due to the absence of proper guidance for initialized positions of Gaussians and densification to manage their scales adaptively. To address these issues, we introduce a generator architecture with a hierarchical multi-scale Gaussian representation that effectively regularizes the position and scale of generated Gaussians. Specifically, we design a hierarchy of Gaussians where finer-level Gaussians are parameterized by their coarser-level counterparts; the position of finer-level Gaussians would be located near their coarser-level counterparts, and the scale would monotonically decrease as the level becomes finer, modeling both coarse and fine details of the 3D scene. Experimental results demonstrate that ours achieves a significantly faster rendering speed (x100) compared to state-of-the-art 3D consistent GANs with comparable 3D generation capability. Project page: https://hse1032.github.io/gsgan.
June 2024. https://arxiv.org/abs/2406.02968
734 Adversarial Attacks Using Differentiable Rendering: A Survey Matthew Hull,Chao Zhang,Zsolt Kira,Duen Horng Chau
AbstractDifferentiable rendering methods have emerged as a promising means for generating photo-realistic and physically plausible adversarial attacks by manipulating 3D objects and scenes that can deceive deep neural networks (DNNs). Recently, differentiable rendering capabilities have evolved significantly into a diverse landscape of libraries, such as Mitsuba, PyTorch3D, and methods like Neural Radiance Fields and 3D Gaussian Splatting for solving inverse rendering problems that share conceptually similar properties commonly used to attack DNNs, such as back-propagation and optimization. However, the adversarial machine learning research community has not yet fully explored or understood such capabilities for generating attacks. Some key reasons are that researchers often have different attack goals, such as misclassification or misdetection, and use different tasks to accomplish these goals by manipulating different representation in a scene, such as the mesh or texture of an object. This survey adopts a task-oriented unifying framework that systematically summarizes common tasks, such as manipulating textures, altering illumination, and modifying 3D meshes to exploit vulnerabilities in DNNs. Our framework enables easy comparison of existing works, reveals research gaps and spotlights exciting future research directions in this rapidly evolving field. Through focusing on how these tasks enable attacks on various DNNs such as image classification, facial recognition, object detection, optical flow and depth estimation, our survey helps researchers and practitioners better understand the vulnerabilities of computer vision systems against photorealistic adversarial attacks that could threaten real-world applications.
November 2024. https://arxiv.org/abs/2411.09749
733 GaussianCity: Generative Gaussian Splatting for Unbounded 3D City Generation Haozhe Xie,Zhaoxi Chen,Fangzhou Hong,Ziwei Liu
Abstract3D city generation with NeRF-based methods shows promising generation results but is computationally inefficient. Recently 3D Gaussian Splatting (3D-GS) has emerged as a highly efficient alternative for object-level 3D generation. However, adapting 3D-GS from finite-scale 3D objects and humans to infinite-scale 3D cities is non-trivial. Unbounded 3D city generation entails significant storage overhead (out-of-memory issues), arising from the need to expand points to billions, often demanding hundreds of Gigabytes of VRAM for a city scene spanning 10km^2. In this paper, we propose GaussianCity, a generative Gaussian Splatting framework dedicated to efficiently synthesizing unbounded 3D cities with a single feed-forward pass. Our key insights are two-fold: 1) Compact 3D Scene Representation: We introduce BEV-Point as a highly compact intermediate representation, ensuring that the growth in VRAM usage for unbounded scenes remains constant, thus enabling unbounded city generation. 2) Spatial-aware Gaussian Attribute Decoder: We present spatial-aware BEV-Point decoder to produce 3D Gaussian attributes, which leverages Point Serializer to integrate the structural and contextual characteristics of BEV points. Extensive experiments demonstrate that GaussianCity achieves state-of-the-art results in both drone-view and street-view 3D city generation. Notably, compared to CityDreamer, GaussianCity exhibits superior performance with a speedup of 60 times (10.72 FPS v.s. 0.18 FPS).
June 2024. https://arxiv.org/abs/2406.06526
732 Projecting Gaussian Ellipsoids While Avoiding Affine Projection Approximation Han Qi,Tao Cai,Xiyue Han
AbstractRecently, 3D Gaussian Splatting has dominated novel-view synthesis with its real-time rendering speed and state-of-the-art rendering quality. However, during the rendering process, the use of the Jacobian of the affine approximation of the projection transformation leads to inevitable errors, resulting in blurriness, artifacts and a lack of scene consistency in the final rendered images. To address this issue, we introduce an ellipsoid-based projection method to calculate the projection of Gaussian ellipsoid onto the image plane, which is the primitive of 3D Gaussian Splatting. As our proposed ellipsoid-based projection method cannot handle Gaussian ellipsoids with camera origins inside them or parts lying below $z=0$ plane in the camera space, we designed a pre-filtering strategy. Experiments over multiple widely adopted benchmark datasets show that our ellipsoid-based projection method can enhance the rendering quality of 3D Gaussian Splatting and its extensions.
November 2024. https://arxiv.org/abs/2411.07579
731 4D Gaussian Splatting in the Wild with Uncertainty-Aware Regularization Mijeong Kim,Jongwoo Lim,Bohyung Han
AbstractNovel view synthesis of dynamic scenes is becoming important in various applications, including augmented and virtual reality. We propose a novel 4D Gaussian Splatting (4DGS) algorithm for dynamic scenes from casually recorded monocular videos. To overcome the overfitting problem of existing work for these real-world videos, we introduce an uncertainty-aware regularization that identifies uncertain regions with few observations and selectively imposes additional priors based on diffusion models and depth smoothness on such regions. This approach improves both the performance of novel view synthesis and the quality of training image reconstruction. We also identify the initialization problem of 4DGS in fast-moving dynamic regions, where the Structure from Motion (SfM) algorithm fails to provide reliable 3D landmarks. To initialize Gaussian primitives in such regions, we present a dynamic region densification method using the estimated depth maps and scene flow. Our experiments show that the proposed method improves the performance of 4DGS reconstruction from a video captured by a handheld monocular camera and also exhibits promising results in few-shot static scene reconstruction.
November 2024. https://arxiv.org/abs/2411.08879
730 GaussianObject: High-Quality 3D Object Reconstruction from Four Views with Gaussian Splatting Chen Yang,Sikuang Li,Jiemin Fang,Ruofan Liang,Lingxi Xie,Xiaopeng Zhang,Wei Shen,Qi Tian
AbstractReconstructing and rendering 3D objects from highly sparse views is of critical importance for promoting applications of 3D vision techniques and improving user experience. However, images from sparse views only contain very limited 3D information, leading to two significant challenges: 1) Difficulty in building multi-view consistency as images for matching are too few; 2) Partially omitted or highly compressed object information as view coverage is insufficient. To tackle these challenges, we propose GaussianObject, a framework to represent and render the 3D object with Gaussian splatting that achieves high rendering quality with only 4 input images. We first introduce techniques of visual hull and floater elimination, which explicitly inject structure priors into the initial optimization process to help build multi-view consistency, yielding a coarse 3D Gaussian representation. Then we construct a Gaussian repair model based on diffusion models to supplement the omitted object information, where Gaussians are further refined. We design a self-generating strategy to obtain image pairs for training the repair model. We further design a COLMAP-free variant, where pre-given accurate camera poses are not required, which achieves competitive quality and facilitates wider applications. GaussianObject is evaluated on several challenging datasets, including MipNeRF360, OmniObject3D, OpenIllumination, and our-collected unposed images, achieving superior performance from only four views and significantly outperforming previous SOTA methods. Our demo is available at https://gaussianobject.github.io/, and the code has been released at https://github.com/GaussianObject/GaussianObject.
February 2024. https://arxiv.org/abs/2402.10259
729 Textured-GS: Gaussian Splatting with Spatially Defined Color and Opacity Zhentao Huang,Minglun Gong
AbstractIn this paper, we introduce Textured-GS, an innovative method for rendering Gaussian splatting that incorporates spatially defined color and opacity variations using Spherical Harmonics (SH). This approach enables each Gaussian to exhibit a richer representation by accommodating varying colors and opacities across its surface, significantly enhancing rendering quality compared to traditional methods. To demonstrate the merits of our approach, we have adapted the Mini-Splatting architecture to integrate textured Gaussians without increasing the number of Gaussians. Our experiments across multiple real-world datasets show that Textured-GS consistently outperforms both the baseline Mini-Splatting and standard 3DGS in terms of visual fidelity. The results highlight the potential of Textured-GS to advance Gaussian-based rendering technologies, promising more efficient and high-quality scene reconstructions. Our implementation is available at https://github.com/ZhentaoHuang/Textured-GS.
July 2024. https://arxiv.org/abs/2407.09733
728 Towards More Accurate Fake Detection on Images Generated from Advanced Generative and Neural Rendering Models Chengdong Dong,Vijayakumar Bhagavatula,Zhenyu Zhou,Ajay Kumar
AbstractThe remarkable progress in neural-network-driven visual data generation, especially with neural rendering techniques like Neural Radiance Fields and 3D Gaussian splatting, offers a powerful alternative to GANs and diffusion models. These methods can produce high-fidelity images and lifelike avatars, highlighting the need for robust detection methods. In response, an unsupervised training technique is proposed that enables the model to extract comprehensive features from the Fourier spectrum magnitude, thereby overcoming the challenges of reconstructing the spectrum due to its centrosymmetric properties. By leveraging the spectral domain and dynamically combining it with spatial domain information, we create a robust multimodal detector that demonstrates superior generalization capabilities in identifying challenging synthetic images generated by the latest image synthesis techniques. To address the absence of a 3D neural rendering-based fake image database, we develop a comprehensive database that includes images generated by diverse neural rendering techniques, providing a robust foundation for evaluating and advancing detection methods.
November 2024. https://arxiv.org/abs/2411.08642
727 Biomass phenotyping of oilseed rape through UAV multi-view oblique imaging with 3DGS and SAM model Yutao Shen,Hongyu Zhou,Xin Yang,Xuqi Lu,Ziyue Guo,Lixi Jiang,Yong He,Haiyan Cen
AbstractBiomass estimation of oilseed rape is crucial for optimizing crop productivity and breeding strategies. While UAV-based imaging has advanced high-throughput phenotyping, current methods often rely on orthophoto images, which struggle with overlapping leaves and incomplete structural information in complex field environments. This study integrates 3D Gaussian Splatting (3DGS) with the Segment Anything Model (SAM) for precise 3D reconstruction and biomass estimation of oilseed rape. UAV multi-view oblique images from 36 angles were used to perform 3D reconstruction, with the SAM module enhancing point cloud segmentation. The segmented point clouds were then converted into point cloud volumes, which were fitted to ground-measured biomass using linear regression. The results showed that 3DGS (7k and 30k iterations) provided high accuracy, with peak signal-to-noise ratios (PSNR) of 27.43 and 29.53 and training times of 7 and 49 minutes, respectively. This performance exceeded that of structure from motion (SfM) and mipmap Neural Radiance Fields (Mip-NeRF), demonstrating superior efficiency. The SAM module achieved high segmentation accuracy, with a mean intersection over union (mIoU) of 0.961 and an F1-score of 0.980. Additionally, a comparison of biomass extraction models found the point cloud volume model to be the most accurate, with an determination coefficient (R2) of 0.976, root mean square error (RMSE) of 2.92 g/plant, and mean absolute percentage error (MAPE) of 6.81%, outperforming both the plot crop volume and individual crop volume models. This study highlights the potential of combining 3DGS with multi-view UAV imaging for improved biomass phenotyping.
November 2024. https://arxiv.org/abs/2411.08453
726 DG-SLAM: Robust Dynamic Gaussian Splatting SLAM with Hybrid Pose Optimization Yueming Xu,Haochen Jiang,Zhongyang Xiao,Jianfeng Feng,Li Zhang
AbstractAchieving robust and precise pose estimation in dynamic scenes is a significant research challenge in Visual Simultaneous Localization and Mapping (SLAM). Recent advancements integrating Gaussian Splatting into SLAM systems have proven effective in creating high-quality renderings using explicit 3D Gaussian models, significantly improving environmental reconstruction fidelity. However, these approaches depend on a static environment assumption and face challenges in dynamic environments due to inconsistent observations of geometry and photometry. To address this problem, we propose DG-SLAM, the first robust dynamic visual SLAM system grounded in 3D Gaussians, which provides precise camera pose estimation alongside high-fidelity reconstructions. Specifically, we propose effective strategies, including motion mask generation, adaptive Gaussian point management, and a hybrid camera tracking algorithm to improve the accuracy and robustness of pose estimation. Extensive experiments demonstrate that DG-SLAM delivers state-of-the-art performance in camera pose estimation, map reconstruction, and novel-view synthesis in dynamic scenes, outperforming existing methods meanwhile preserving real-time rendering ability.
November 2024. https://arxiv.org/abs/2411.08373
725 MBA-SLAM: Motion Blur Aware Dense Visual SLAM with Radiance Fields Representation Peng Wang,Lingzhe Zhao,Yin Zhang,Shiyu Zhao,Peidong Liu
AbstractEmerging 3D scene representations, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), have demonstrated their effectiveness in Simultaneous Localization and Mapping (SLAM) for photo-realistic rendering, particularly when using high-quality video sequences as input. However, existing methods struggle with motion-blurred frames, which are common in real-world scenarios like low-light or long-exposure conditions. This often results in a significant reduction in both camera localization accuracy and map reconstruction quality. To address this challenge, we propose a dense visual SLAM pipeline (i.e. MBA-SLAM) to handle severe motion-blurred inputs. Our approach integrates an efficient motion blur-aware tracker with either neural radiance fields or Gaussian Splatting based mapper. By accurately modeling the physical image formation process of motion-blurred images, our method simultaneously learns 3D scene representation and estimates the cameras' local trajectory during exposure time, enabling proactive compensation for motion blur caused by camera movement. In our experiments, we demonstrate that MBA-SLAM surpasses previous state-of-the-art methods in both camera localization and map reconstruction, showcasing superior performance across a range of datasets, including synthetic and real datasets featuring sharp images as well as those affected by motion blur, highlighting the versatility and robustness of our approach. Code is available at https://github.com/WU-CVGL/MBA-SLAM.
November 2024. https://arxiv.org/abs/2411.08279
724 LightGaussian: Unbounded 3D Gaussian Compression with 15x Reduction and 200+ FPS Zhiwen Fan,Kevin Wang,Kairun Wen,Zehao Zhu,Dejia Xu,Zhangyang Wang
AbstractRecent advances in real-time neural rendering using point-based techniques have enabled broader adoption of 3D representations. However, foundational approaches like 3D Gaussian Splatting impose substantial storage overhead, as Structure-from-Motion (SfM) points can grow to millions, often requiring gigabyte-level disk space for a single unbounded scene. This growth presents scalability challenges and hinders splatting efficiency. To address this, we introduce LightGaussian, a method for transforming 3D Gaussians into a more compact format. Inspired by Network Pruning, LightGaussian identifies Gaussians with minimal global significance on scene reconstruction, and applies a pruning and recovery process to reduce redundancy while preserving visual quality. Knowledge distillation and pseudo-view augmentation then transfer spherical harmonic coefficients to a lower degree, yielding compact representations. Gaussian Vector Quantization, based on each Gaussian's global significance, further lowers bitwidth with minimal accuracy loss. LightGaussian achieves an average 15x compression rate while boosting FPS from 144 to 237 within the 3D-GS framework, enabling efficient complex scene representation on the Mip-NeRF 360 and Tank & Temple datasets. The proposed Gaussian pruning approach is also adaptable to other 3D representations (e.g., Scaffold-GS), demonstrating strong generalization capabilities.
November 2023. https://arxiv.org/abs/2311.17245
723 SplatFormer: Point Transformer for Robust 3D Gaussian Splatting Yutong Chen,Marko Mihajlovic,Xiyi Chen,Yiming Wang,Sergey Prokudin,Siyu Tang
Abstract3D Gaussian Splatting (3DGS) has recently transformed photorealistic reconstruction, achieving high visual fidelity and real-time performance. However, rendering quality significantly deteriorates when test views deviate from the camera angles used during training, posing a major challenge for applications in immersive free-viewpoint rendering and navigation. In this work, we conduct a comprehensive evaluation of 3DGS and related novel view synthesis methods under out-of-distribution (OOD) test camera scenarios. By creating diverse test cases with synthetic and real-world datasets, we demonstrate that most existing methods, including those incorporating various regularization techniques and data-driven priors, struggle to generalize effectively to OOD views. To address this limitation, we introduce SplatFormer, the first point transformer model specifically designed to operate on Gaussian splats. SplatFormer takes as input an initial 3DGS set optimized under limited training views and refines it in a single forward pass, effectively removing potential artifacts in OOD test views. To our knowledge, this is the first successful application of point transformers directly on 3DGS sets, surpassing the limitations of previous multi-scene training methods, which could handle only a restricted number of input views during inference. Our model significantly improves rendering quality under extreme novel views, achieving state-of-the-art performance in these challenging scenarios and outperforming various 3DGS regularization techniques, multi-scene models tailored for sparse view synthesis, and diffusion-based frameworks.
November 2024. https://arxiv.org/abs/2411.06390
722 GaussianCut: Interactive segmentation via graph cut for 3D Gaussian Splatting Umangi Jain,Ashkan Mirzaei,Igor Gilitschenski
AbstractWe introduce GaussianCut, a new method for interactive multiview segmentation of scenes represented as 3D Gaussians. Our approach allows for selecting the objects to be segmented by interacting with a single view. It accepts intuitive user input, such as point clicks, coarse scribbles, or text. Using 3D Gaussian Splatting (3DGS) as the underlying scene representation simplifies the extraction of objects of interest which are considered to be a subset of the scene's Gaussians. Our key idea is to represent the scene as a graph and use the graph-cut algorithm to minimize an energy function to effectively partition the Gaussians into foreground and background. To achieve this, we construct a graph based on scene Gaussians and devise a segmentation-aligned energy function on the graph to combine user inputs with scene properties. To obtain an initial coarse segmentation, we leverage 2D image/video segmentation models and further refine these coarse estimates using our graph construction. Our empirical evaluations show the adaptability of GaussianCut across a diverse set of scenes. GaussianCut achieves competitive performance with state-of-the-art approaches for 3D segmentation without requiring any additional segmentation-aware training.
November 2024. https://arxiv.org/abs/2411.07555
721 HiCoM: Hierarchical Coherent Motion for Streamable Dynamic Scene with 3D Gaussian Splatting Qiankun Gao,Jiarui Meng,Chengxiang Wen,Jie Chen,Jian Zhang
AbstractThe online reconstruction of dynamic scenes from multi-view streaming videos faces significant challenges in training, rendering and storage efficiency. Harnessing superior learning speed and real-time rendering capabilities, 3D Gaussian Splatting (3DGS) has recently demonstrated considerable potential in this field. However, 3DGS can be inefficient in terms of storage and prone to overfitting by excessively growing Gaussians, particularly with limited views. This paper proposes an efficient framework, dubbed HiCoM, with three key components. First, we construct a compact and robust initial 3DGS representation using a perturbation smoothing strategy. Next, we introduce a Hierarchical Coherent Motion mechanism that leverages the inherent non-uniform distribution and local consistency of 3D Gaussians to swiftly and accurately learn motions across frames. Finally, we continually refine the 3DGS with additional Gaussians, which are later merged into the initial 3DGS to maintain consistency with the evolving scene. To preserve a compact representation, an equivalent number of low-opacity Gaussians that minimally impact the representation are removed before processing subsequent frames. Extensive experiments conducted on two widely used datasets show that our framework improves learning efficiency of the state-of-the-art methods by about $20\%$ and reduces the data storage by $85\%$, achieving competitive free-viewpoint video synthesis quality but with higher robustness and stability. Moreover, by parallel learning multiple frames simultaneously, our HiCoM decreases the average training wall time to $<2$ seconds per frame with negligible performance degradation, substantially boosting real-world applicability and responsiveness.
November 2024. https://arxiv.org/abs/2411.07541
720 DreamScape: 3D Scene Creation via Gaussian Splatting joint Correlation Modeling Xuening Yuan,Hongyu Yang,Yueming Zhao,Di Huang
AbstractRecent progress in text-to-3D creation has been propelled by integrating the potent prior of Diffusion Models from text-to-image generation into the 3D domain. Nevertheless, generating 3D scenes characterized by multiple instances and intricate arrangements remains challenging. In this study, we present DreamScape, a method for creating highly consistent 3D scenes solely from textual descriptions, leveraging the strong 3D representation capabilities of Gaussian Splatting and the complex arrangement abilities of large language models (LLMs). Our approach involves a 3D Gaussian Guide ($3{DG^2}$) for scene representation, consisting of semantic primitives (objects) and their spatial transformations and relationships derived directly from text prompts using LLMs. This compositional representation allows for local-to-global optimization of the entire scene. A progressive scale control is tailored during local object generation, ensuring that objects of different sizes and densities adapt to the scene, which addresses training instability issue arising from simple blending in the subsequent global optimization stage. To mitigate potential biases of LLM priors, we model collision relationships between objects at the global level, enhancing physical correctness and overall realism. Additionally, to generate pervasive objects like rain and snow distributed extensively across the scene, we introduce a sparse initialization and densification strategy. Experiments demonstrate that DreamScape offers high usability and controllability, enabling the generation of high-fidelity 3D scenes from only text prompts and achieving state-of-the-art performance compared to other methods.
April 2024. https://arxiv.org/abs/2404.09227
719 GUS-IR: Gaussian Splatting with Unified Shading for Inverse Rendering Zhihao Liang,Hongdong Li,Kui Jia,Kailing Guo,Qi Zhang
AbstractRecovering the intrinsic physical attributes of a scene from images, generally termed as the inverse rendering problem, has been a central and challenging task in computer vision and computer graphics. In this paper, we present GUS-IR, a novel framework designed to address the inverse rendering problem for complicated scenes featuring rough and glossy surfaces. This paper starts by analyzing and comparing two prominent shading techniques popularly used for inverse rendering, forward shading and deferred shading, effectiveness in handling complex materials. More importantly, we propose a unified shading solution that combines the advantages of both techniques for better decomposition. In addition, we analyze the normal modeling in 3D Gaussian Splatting (3DGS) and utilize the shortest axis as normal for each particle in GUS-IR, along with a depth-related regularization, resulting in improved geometric representation and better shape reconstruction. Furthermore, we enhance the probe-based baking scheme proposed by GS-IR to achieve more accurate ambient occlusion modeling to better handle indirect illumination. Extensive experiments have demonstrated the superior performance of GUS-IR in achieving precise intrinsic decomposition and geometric representation, supporting many downstream tasks (such as relighting, retouching) in computer vision, graphics, and extended reality.
November 2024. https://arxiv.org/abs/2411.07478
718 Efficient Perspective-Correct 3D Gaussian Splatting Using Hybrid Transparency Florian Hahlbohm,Fabian Friederichs,Tim Weyrich,Linus Franke,Moritz Kappel,Susana Castillo,Marc Stamminger,Martin Eisemann,Marcus Magnor
Abstract3D Gaussian Splats (3DGS) have proven a versatile rendering primitive, both for inverse rendering as well as real-time exploration of scenes. In these applications, coherence across camera frames and multiple views is crucial, be it for robust convergence of a scene reconstruction or for artifact-free fly-throughs. Recent work started mitigating artifacts that break multi-view coherence, including popping artifacts due to inconsistent transparency sorting and perspective-correct outlines of (2D) splats. At the same time, real-time requirements forced such implementations to accept compromises in how transparency of large assemblies of 3D Gaussians is resolved, in turn breaking coherence in other ways. In our work, we aim at achieving maximum coherence, by rendering fully perspective-correct 3D Gaussians while using a high-quality approximation of accurate blending, hybrid transparency, on a per-pixel level, in order to retain real-time frame rates. Our fast and perspectively accurate approach for evaluation of 3D Gaussians does not require matrix inversions, thereby ensuring numerical stability and eliminating the need for special handling of degenerate splats, and the hybrid transparency formulation for blending maintains similar quality as fully resolved per-pixel transparencies at a fraction of the rendering costs. We further show that each of these two components can be independently integrated into Gaussian splatting systems. In combination, they achieve up to 2$\times$ higher frame rates, 2$\times$ faster optimization, and equal or better image quality with fewer rendering artifacts compared to traditional 3DGS on common benchmarks.
October 2024. https://arxiv.org/abs/2410.08129
717 A Hierarchical Compression Technique for 3D Gaussian Splatting Compression He Huang,Wenjie Huang,Qi Yang,Yiling Xu,Zhu li
Abstract3D Gaussian Splatting (GS) demonstrates excellent rendering quality and generation speed in novel view synthesis. However, substantial data size poses challenges for storage and transmission, making 3D GS compression an essential technology. Current 3D GS compression research primarily focuses on developing more compact scene representations, such as converting explicit 3D GS data into implicit forms. In contrast, compression of the GS data itself has hardly been explored. To address this gap, we propose a Hierarchical GS Compression (HGSC) technique. Initially, we prune unimportant Gaussians based on importance scores derived from both global and local significance, effectively reducing redundancy while maintaining visual quality. An Octree structure is used to compress 3D positions. Based on the 3D GS Octree, we implement a hierarchical attribute compression strategy by employing a KD-tree to partition the 3D GS into multiple blocks. We apply farthest point sampling to select anchor primitives within each block and others as non-anchor primitives with varying Levels of Details (LoDs). Anchor primitives serve as reference points for predicting non-anchor primitives across different LoDs to reduce spatial redundancy. For anchor primitives, we use the region adaptive hierarchical transform to achieve near-lossless compression of various attributes. For non-anchor primitives, each is predicted based on the k-nearest anchor primitives. To further minimize prediction errors, the reconstructed LoD and anchor primitives are combined to form new anchor primitives to predict the next LoD. Our method notably achieves superior compression quality and a significant data size reduction of over 4.5 times compared to the state-of-the-art compression method on small scenes datasets.
November 2024. https://arxiv.org/abs/2411.06976
716 Adaptive and Temporally Consistent Gaussian Surfels for Multi-view Dynamic Reconstruction Decai Chen,Brianne Oberson,Ingo Feldmann,Oliver Schreer,Anna Hilsmann,Peter Eisert
Abstract3D Gaussian Splatting has recently achieved notable success in novel view synthesis for dynamic scenes and geometry reconstruction in static scenes. Building on these advancements, early methods have been developed for dynamic surface reconstruction by globally optimizing entire sequences. However, reconstructing dynamic scenes with significant topology changes, emerging or disappearing objects, and rapid movements remains a substantial challenge, particularly for long sequences. To address these issues, we propose AT-GS, a novel method for reconstructing high-quality dynamic surfaces from multi-view videos through per-frame incremental optimization. To avoid local minima across frames, we introduce a unified and adaptive gradient-aware densification strategy that integrates the strengths of conventional cloning and splitting techniques. Additionally, we reduce temporal jittering in dynamic surfaces by ensuring consistency in curvature maps across consecutive frames. Our method achieves superior accuracy and temporal coherence in dynamic surface reconstruction, delivering high-fidelity space-time novel view synthesis, even in complex and challenging scenes. Extensive experiments on diverse multi-view video datasets demonstrate the effectiveness of our approach, showing clear advantages over baseline methods. Project page: \url{https://fraunhoferhhi.github.io/AT-GS}
November 2024. https://arxiv.org/abs/2411.06602
715 Through the Curved Cover: Synthesizing Cover Aberrated Scenes with Refractive Field Liuyue Xie,Jiancong Guo,Laszlo A. Jeni,Zhiheng Jia,Mingyang Li,Yunwen Zhou,Chao Guo
AbstractRecent extended reality headsets and field robots have adopted covers to protect the front-facing cameras from environmental hazards and falls. The surface irregularities on the cover can lead to optical aberrations like blurring and non-parametric distortions. Novel view synthesis methods like NeRF and 3D Gaussian Splatting are ill-equipped to synthesize from sequences with optical aberrations. To address this challenge, we introduce SynthCover to enable novel view synthesis through protective covers for downstream extended reality applications. SynthCover employs a Refractive Field that estimates the cover's geometry, enabling precise analytical calculation of refracted rays. Experiments on synthetic and real-world scenes demonstrate our method's ability to accurately model scenes viewed through protective covers, achieving a significant improvement in rendering quality compared to prior methods. We also show that the model can adjust well to various cover geometries with synthetic sequences captured with covers of different surface curvatures. To motivate further studies on this problem, we provide the benchmarked dataset containing real and synthetic walkable scenes captured with protective cover optical aberrations.
November 2024. https://arxiv.org/abs/2411.06365
714 AtomGS: Atomizing Gaussian Splatting for High-Fidelity Radiance Field Rong Liu,Rui Xu,Yue Hu,Meida Chen,Andrew Feng
Abstract3D Gaussian Splatting (3DGS) has recently advanced radiance field reconstruction by offering superior capabilities for novel view synthesis and real-time rendering speed. However, its strategy of blending optimization and adaptive density control might lead to sub-optimal results; it can sometimes yield noisy geometry and blurry artifacts due to prioritizing optimizing large Gaussians at the cost of adequately densifying smaller ones. To address this, we introduce AtomGS, consisting of Atomized Proliferation and Geometry-Guided Optimization. The Atomized Proliferation constrains ellipsoid Gaussians of various sizes into more uniform-sized Atom Gaussians. The strategy enhances the representation of areas with fine features by placing greater emphasis on densification in accordance with scene details. In addition, we proposed a Geometry-Guided Optimization approach that incorporates an Edge-Aware Normal Loss. This optimization method effectively smooths flat surfaces while preserving intricate details. Our evaluation shows that AtomGS outperforms existing state-of-the-art methods in rendering quality. Additionally, it achieves competitive accuracy in geometry reconstruction and offers a significant improvement in training speed over other SDF-based methods. More interactive demos can be found in our website (https://rongliu-leo.github.io/AtomGS/).
May 2024. https://arxiv.org/abs/2405.12369
713 Implicit Gaussian Splatting with Efficient Multi-Level Tri-Plane Representation Minye Wu,Tinne Tuytelaars
AbstractRecent advancements in photo-realistic novel view synthesis have been significantly driven by Gaussian Splatting (3DGS). Nevertheless, the explicit nature of 3DGS data entails considerable storage requirements, highlighting a pressing need for more efficient data representations. To address this, we present Implicit Gaussian Splatting (IGS), an innovative hybrid model that integrates explicit point clouds with implicit feature embeddings through a multi-level tri-plane architecture. This architecture features 2D feature grids at various resolutions across different levels, facilitating continuous spatial domain representation and enhancing spatial correlations among Gaussian primitives. Building upon this foundation, we introduce a level-based progressive training scheme, which incorporates explicit spatial regularization. This method capitalizes on spatial correlations to enhance both the rendering quality and the compactness of the IGS representation. Furthermore, we propose a novel compression pipeline tailored for both point clouds and 2D feature grids, considering the entropy variations across different levels. Extensive experimental evaluations demonstrate that our algorithm can deliver high-quality rendering using only a few MBs, effectively balancing storage efficiency and rendering fidelity, and yielding results that are competitive with the state-of-the-art.
August 2024. https://arxiv.org/abs/2408.10041
712 AI-Driven Stylization of 3D Environments Yuanbo Chen,Yixiao Kang,Yukun Song,Cyrus Vachha,Sining Huang
AbstractIn this system, we discuss methods to stylize a scene of 3D primitive objects into a higher fidelity 3D scene using novel 3D representations like NeRFs and 3D Gaussian Splatting. Our approach leverages existing image stylization systems and image-to-3D generative models to create a pipeline that iteratively stylizes and composites 3D objects into scenes. We show our results on adding generated objects into a scene and discuss limitations.
November 2024. https://arxiv.org/abs/2411.06067
711 GaussianSpa: An "Optimizing-Sparsifying" Simplification Framework for Compact and High-Quality 3D Gaussian Splatting Yangming Zhang,Wenqi Jia,Wei Niu,Miao Yin
Abstract3D Gaussian Splatting (3DGS) has emerged as a mainstream for novel view synthesis, leveraging continuous aggregations of Gaussian functions to model scene geometry. However, 3DGS suffers from substantial memory requirements to store the multitude of Gaussians, hindering its practicality. To address this challenge, we introduce GaussianSpa, an optimization-based simplification framework for compact and high-quality 3DGS. Specifically, we formulate the simplification as an optimization problem associated with the 3DGS training. Correspondingly, we propose an efficient "optimizing-sparsifying" solution that alternately solves two independent sub-problems, gradually imposing strong sparsity onto the Gaussians in the training process. Our comprehensive evaluations on various datasets show the superiority of GaussianSpa over existing state-of-the-art approaches. Notably, GaussianSpa achieves an average PSNR improvement of 0.9 dB on the real-world Deep Blending dataset with 10$\times$ fewer Gaussians compared to the vanilla 3DGS. Our project page is available at https://gaussianspa.github.io/.
November 2024. https://arxiv.org/abs/2411.06019
710 PEP-GS: Perceptually-Enhanced Precise Structured 3D Gaussians for View-Adaptive Rendering Junxi Jin,Xiulai Li,Haiping Huang,Lianjun Liu,Yujie Sun
AbstractRecent advances in structured 3D Gaussians for view-adaptive rendering, particularly through methods like Scaffold-GS, have demonstrated promising results in neural scene representation. However, existing approaches still face challenges in perceptual consistency and precise view-dependent effects. We present PEP-GS, a novel framework that enhances structured 3D Gaussians through three key innovations: (1) a Local-Enhanced Multi-head Self-Attention (LEMSA) mechanism that replaces spherical harmonics for more accurate view-dependent color decoding, and (2) Kolmogorov-Arnold Networks (KAN) that optimize Gaussian opacity and covariance functions for enhanced interpretability and splatting precision. (3) a Neural Laplacian Pyramid Decomposition (NLPD) that improves perceptual similarity across views. Our comprehensive evaluation across multiple datasets indicates that, compared to the current state-of-the-art methods, these improvements are particularly evident in challenging scenarios such as view-dependent effects, specular reflections, fine-scale details and false geometry generation.
November 2024. https://arxiv.org/abs/2411.05731
709 GS2Pose: Two-stage 6D Object Pose Estimation Guided by Gaussian Splatting Jilan Mei,Junbo Li,Cai Meng
AbstractThis paper proposes a new method for accurate and robust 6D pose estimation of novel objects, named GS2Pose. By introducing 3D Gaussian splatting, GS2Pose can utilize the reconstruction results without requiring a high-quality CAD model, which means it only requires segmented RGBD images as input. Specifically, GS2Pose employs a two-stage structure consisting of coarse estimation followed by refined estimation. In the coarse stage, a lightweight U-Net network with a polarization attention mechanism, called Pose-Net, is designed. By using the 3DGS model for supervised training, Pose-Net can generate NOCS images to compute a coarse pose. In the refinement stage, GS2Pose formulates a pose regression algorithm following the idea of reprojection or Bundle Adjustment (BA), referred to as GS-Refiner. By leveraging Lie algebra to extend 3DGS, GS-Refiner obtains a pose-differentiable rendering pipeline that refines the coarse pose by comparing the input images with the rendered images. GS-Refiner also selectively updates parameters in the 3DGS model to achieve environmental adaptation, thereby enhancing the algorithm's robustness and flexibility to illuminative variation, occlusion, and other challenging disruptive factors. GS2Pose was evaluated through experiments conducted on the LineMod dataset, where it was compared with similar algorithms, yielding highly competitive results. The code for GS2Pose will soon be released on GitHub.
November 2024. https://arxiv.org/abs/2411.03807
708 ProEdit: Simple Progression is All You Need for High-Quality 3D Scene Editing Jun-Kun Chen,Yu-Xiong Wang
AbstractThis paper proposes ProEdit - a simple yet effective framework for high-quality 3D scene editing guided by diffusion distillation in a novel progressive manner. Inspired by the crucial observation that multi-view inconsistency in scene editing is rooted in the diffusion model's large feasible output space (FOS), our framework controls the size of FOS and reduces inconsistency by decomposing the overall editing task into several subtasks, which are then executed progressively on the scene. Within this framework, we design a difficulty-aware subtask decomposition scheduler and an adaptive 3D Gaussian splatting (3DGS) training strategy, ensuring high quality and efficiency in performing each subtask. Extensive evaluation shows that our ProEdit achieves state-of-the-art results in various scenes and challenging editing tasks, all through a simple framework without any expensive or sophisticated add-ons like distillation losses, components, or training procedures. Notably, ProEdit also provides a new way to control, preview, and select the "aggressivity" of editing operation during the editing process.
November 2024. https://arxiv.org/abs/2411.05006
707 MVSplat360: Feed-Forward 360 Scene Synthesis from Sparse Views Yuedong Chen,Chuanxia Zheng,Haofei Xu,Bohan Zhuang,Andrea Vedaldi,Tat-Jen Cham,Jianfei Cai
AbstractWe introduce MVSplat360, a feed-forward approach for 360\xc2\xb0 novel view synthesis (NVS) of diverse real-world scenes, using only sparse observations. This setting is inherently ill-posed due to minimal overlap among input views and insufficient visual information provided, making it challenging for conventional methods to achieve high-quality results. Our MVSplat360 addresses this by effectively combining geometry-aware 3D reconstruction with temporally consistent video generation. Specifically, it refactors a feed-forward 3D Gaussian Splatting (3DGS) model to render features directly into the latent space of a pre-trained Stable Video Diffusion (SVD) model, where these features then act as pose and visual cues to guide the denoising process and produce photorealistic 3D-consistent views. Our model is end-to-end trainable and supports rendering arbitrary views with as few as 5 sparse input views. To evaluate MVSplat360's performance, we introduce a new benchmark using the challenging DL3DV-10K dataset, where MVSplat360 achieves superior visual quality compared to state-of-the-art methods on wide-sweeping or even 360\xc2\xb0 NVS tasks. Experiments on the existing benchmark RealEstate10K also confirm the effectiveness of our model. The video results are available on our project page: https://donydchen.github.io/mvsplat360.
November 2024. https://arxiv.org/abs/2411.04924
706 DN-Splatter: Depth and Normal Priors for Gaussian Splatting and Meshing Matias Turkulainen,Xuqian Ren,Iaroslav Melekhov,Otto Seiskari,Esa Rahtu,Juho Kannala
AbstractHigh-fidelity 3D reconstruction of common indoor scenes is crucial for VR and AR applications. 3D Gaussian splatting, a novel differentiable rendering technique, has achieved state-of-the-art novel view synthesis results with high rendering speeds and relatively low training times. However, its performance on scenes commonly seen in indoor datasets is poor due to the lack of geometric constraints during optimization. In this work, we explore the use of readily accessible geometric cues to enhance Gaussian splatting optimization in challenging, ill-posed, and textureless scenes. We extend 3D Gaussian splatting with depth and normal cues to tackle challenging indoor datasets and showcase techniques for efficient mesh extraction. Specifically, we regularize the optimization procedure with depth information, enforce local smoothness of nearby Gaussians, and use off-the-shelf monocular networks to achieve better alignment with the true scene geometry. We propose an adaptive depth loss based on the gradient of color images, improving depth estimation and novel view synthesis results over various baselines. Our simple yet effective regularization technique enables direct mesh extraction from the Gaussian representation, yielding more physically accurate reconstructions of indoor scenes.
March 2024. https://arxiv.org/abs/2403.17822
705 SplatOverflow: Asynchronous Hardware Troubleshooting Amritansh Kwatra,Tobias Wienberg,Ilan Mandel,Ritik Batra,Peter He,Francois Guimbretiere,Thijs Roumen
AbstractAs tools for designing and manufacturing hardware become more accessible, smaller producers can develop and distribute novel hardware. However, there aren't established tools to support end-user hardware troubleshooting or routine maintenance. As a result, technical support for hardware remains ad-hoc and challenging to scale. Inspired by software troubleshooting workflows like StackOverflow, we propose a workflow for asynchronous hardware troubleshooting: SplatOverflow. SplatOverflow creates a novel boundary object, the SplatOverflow scene, that users reference to communicate about hardware. The scene comprises a 3D Gaussian Splat of the user's hardware registered onto the hardware's CAD model. The splat captures the current state of the hardware, and the registered CAD model acts as a referential anchor for troubleshooting instructions. With SplatOverflow, maintainers can directly address issues and author instructions in the user's workspace. The instructions define workflows that can easily be shared between users and recontextualized in new environments. In this paper, we describe the design of SplatOverflow, detail the workflows it enables, and illustrate its utility to different kinds of users. We also validate that non-experts can use SplatOverflow to troubleshoot common problems with a 3D printer in a user study.
November 2024. https://arxiv.org/abs/2411.02332
704 Gaussian Deja-vu: Creating Controllable 3D Gaussian Head-Avatars with Enhanced Generalization and Personalization Abilities Peizhi Yan,Rabab Ward,Qiang Tang,Shan Du
AbstractRecent advancements in 3D Gaussian Splatting (3DGS) have unlocked significant potential for modeling 3D head avatars, providing greater flexibility than mesh-based methods and more efficient rendering compared to NeRF-based approaches. Despite these advancements, the creation of controllable 3DGS-based head avatars remains time-intensive, often requiring tens of minutes to hours. To expedite this process, we here introduce the "Gaussian Deja-vu" framework, which first obtains a generalized model of the head avatar and then personalizes the result. The generalized model is trained on large 2D (synthetic and real) image datasets. This model provides a well-initialized 3D Gaussian head that is further refined using a monocular video to achieve the personalized head avatar. For personalizing, we propose learnable expression-aware rectification blendmaps to correct the initial 3D Gaussians, ensuring rapid convergence without the reliance on neural networks. Experiments demonstrate that the proposed method meets its objectives. It outperforms state-of-the-art 3D Gaussian head avatars in terms of photorealistic quality as well as reduces training time consumption to at least a quarter of the existing methods, producing the avatar in minutes.
September 2024. https://arxiv.org/abs/2409.16147
703 OmniGS: Fast Radiance Field Reconstruction using Omnidirectional Gaussian Splatting Longwei Li,Huajian Huang,Sai-Kit Yeung,Hui Cheng
AbstractPhotorealistic reconstruction relying on 3D Gaussian Splatting has shown promising potential in various domains. However, the current 3D Gaussian Splatting system only supports radiance field reconstruction using undistorted perspective images. In this paper, we present OmniGS, a novel omnidirectional Gaussian splatting system, to take advantage of omnidirectional images for fast radiance field reconstruction. Specifically, we conduct a theoretical analysis of spherical camera model derivatives in 3D Gaussian Splatting. According to the derivatives, we then implement a new GPU-accelerated omnidirectional rasterizer that directly splats 3D Gaussians onto the equirectangular screen space for omnidirectional image rendering. We realize differentiable optimization of the omnidirectional radiance field without the requirement of cube-map rectification or tangent-plane approximation. Extensive experiments conducted in egocentric and roaming scenarios demonstrate that our method achieves state-of-the-art reconstruction quality and high rendering speed using omnidirectional images. The code will be publicly available.
April 2024. https://arxiv.org/abs/2404.03202
702 3DGS-CD: 3D Gaussian Splatting-based Change Detection for Physical Object Rearrangement Ziqi Lu,Jianbo Ye,John Leonard
AbstractWe present 3DGS-CD, the first 3D Gaussian Splatting (3DGS)-based method for detecting physical object rearrangements in 3D scenes. Our approach estimates 3D object-level changes by comparing two sets of unaligned images taken at different times. Leveraging 3DGS's novel view rendering and EfficientSAM's zero-shot segmentation capabilities, we detect 2D object-level changes, which are then associated and fused across views to estimate 3D changes. Our method can detect changes in cluttered environments using sparse post-change images within as little as 18s, using as few as a single new image. It does not rely on depth input, user instructions, object classes, or object models -- An object is recognized simply if it has been re-arranged. Our approach is evaluated on both public and self-collected real-world datasets, achieving up to 14% higher accuracy and three orders of magnitude faster performance compared to the state-of-the-art radiance-field-based change detection method. This significant performance boost enables a broad range of downstream applications, where we highlight three key use cases: object reconstruction, robot workspace reset, and 3DGS model update. Our code and data will be made available at https://github.com/520xyxyzq/3DGS-CD.
November 2024. https://arxiv.org/abs/2411.03706
701 Structure Consistent Gaussian Splatting with Matching Prior for Few-shot Novel View Synthesis Rui Peng,Wangze Xu,Luyang Tang,Liwei Liao,Jianbo Jiao,Ronggang Wang
AbstractDespite the substantial progress of novel view synthesis, existing methods, either based on the Neural Radiance Fields (NeRF) or more recently 3D Gaussian Splatting (3DGS), suffer significant degradation when the input becomes sparse. Numerous efforts have been introduced to alleviate this problem, but they still struggle to synthesize satisfactory results efficiently, especially in the large scene. In this paper, we propose SCGaussian, a Structure Consistent Gaussian Splatting method using matching priors to learn 3D consistent scene structure. Considering the high interdependence of Gaussian attributes, we optimize the scene structure in two folds: rendering geometry and, more importantly, the position of Gaussian primitives, which is hard to be directly constrained in the vanilla 3DGS due to the non-structure property. To achieve this, we present a hybrid Gaussian representation. Besides the ordinary non-structure Gaussian primitives, our model also consists of ray-based Gaussian primitives that are bound to matching rays and whose optimization of their positions is restricted along the ray. Thus, we can utilize the matching correspondence to directly enforce the position of these Gaussian primitives to converge to the surface points where rays intersect. Extensive experiments on forward-facing, surrounding, and complex large scenes show the effectiveness of our approach with state-of-the-art performance and high efficiency. Code is available at https://github.com/prstrive/SCGaussian.
November 2024. https://arxiv.org/abs/2411.03637
700 Object and Contact Point Tracking in Demonstrations Using 3D Gaussian Splatting Michael B\xc3\xbcttner,Jonathan Francis,Helge Rhodin,Andrew Melnik
AbstractThis paper introduces a method to enhance Interactive Imitation Learning (IIL) by extracting touch interaction points and tracking object movement from video demonstrations. The approach extends current IIL systems by providing robots with detailed knowledge of both where and how to interact with objects, particularly complex articulated ones like doors and drawers. By leveraging cutting-edge techniques such as 3D Gaussian Splatting and FoundationPose for tracking, this method allows robots to better understand and manipulate objects in dynamic environments. The research lays the foundation for more effective task learning and execution in autonomous robotic systems.
November 2024. https://arxiv.org/abs/2411.03555
699 FewViewGS: Gaussian Splatting with Few View Matching and Multi-stage Training Ruihong Yin,Vladimir Yugay,Yue Li,Sezer Karaoglu,Theo Gevers
AbstractThe field of novel view synthesis from images has seen rapid advancements with the introduction of Neural Radiance Fields (NeRF) and more recently with 3D Gaussian Splatting. Gaussian Splatting became widely adopted due to its efficiency and ability to render novel views accurately. While Gaussian Splatting performs well when a sufficient amount of training images are available, its unstructured explicit representation tends to overfit in scenarios with sparse input images, resulting in poor rendering performance. To address this, we present a 3D Gaussian-based novel view synthesis method using sparse input images that can accurately render the scene from the viewpoints not covered by the training images. We propose a multi-stage training scheme with matching-based consistency constraints imposed on the novel views without relying on pre-trained depth estimation or diffusion models. This is achieved by using the matches of the available training images to supervise the generation of the novel views sampled between the training frames with color, geometry, and semantic losses. In addition, we introduce a locality preserving regularization for 3D Gaussians which removes rendering artifacts by preserving the local color structure of the scene. Evaluation on synthetic and real-world datasets demonstrates competitive or superior performance of our method in few-shot novel view synthesis compared to existing state-of-the-art methods.
November 2024. https://arxiv.org/abs/2411.02229
698 DC-Gaussian: Improving 3D Gaussian Splatting for Reflective Dash Cam Videos Linhan Wang,Kai Cheng,Shuo Lei,Shengkun Wang,Wei Yin,Chenyang Lei,Xiaoxiao Long,Chang-Tien Lu
AbstractWe present DC-Gaussian, a new method for generating novel views from in-vehicle dash cam videos. While neural rendering techniques have made significant strides in driving scenarios, existing methods are primarily designed for videos collected by autonomous vehicles. However, these videos are limited in both quantity and diversity compared to dash cam videos, which are more widely used across various types of vehicles and capture a broader range of scenarios. Dash cam videos often suffer from severe obstructions such as reflections and occlusions on the windshields, which significantly impede the application of neural rendering techniques. To address this challenge, we develop DC-Gaussian based on the recent real-time neural rendering technique 3D Gaussian Splatting (3DGS). Our approach includes an adaptive image decomposition module to model reflections and occlusions in a unified manner. Additionally, we introduce illumination-aware obstruction modeling to manage reflections and occlusions under varying lighting conditions. Lastly, we employ a geometry-guided Gaussian enhancement strategy to improve rendering details by incorporating additional geometry priors. Experiments on self-captured and public dash cam videos show that our method not only achieves state-of-the-art performance in novel view synthesis, but also accurately reconstructing captured scenes getting rid of obstructions. See the project page for code, data: https://linhanwang.github.io/dcgaussian/.
May 2024. https://arxiv.org/abs/2405.17705
697 HFGaussian: Learning Generalizable Gaussian Human with Integrated Human Features Arnab Dey,Cheng-You Lu,Andrew I. Comport,Srinath Sridhar,Chin-Teng Lin,Jean Martinet
AbstractRecent advancements in radiance field rendering show promising results in 3D scene representation, where Gaussian splatting-based techniques emerge as state-of-the-art due to their quality and efficiency. Gaussian splatting is widely used for various applications, including 3D human representation. However, previous 3D Gaussian splatting methods either use parametric body models as additional information or fail to provide any underlying structure, like human biomechanical features, which are essential for different applications. In this paper, we present a novel approach called HFGaussian that can estimate novel views and human features, such as the 3D skeleton, 3D key points, and dense pose, from sparse input images in real time at 25 FPS. The proposed method leverages generalizable Gaussian splatting technique to represent the human subject and its associated features, enabling efficient and generalizable reconstruction. By incorporating a pose regression network and the feature splatting technique with Gaussian splatting, HFGaussian demonstrates improved capabilities over existing 3D human methods, showcasing the potential of 3D human representations with integrated biomechanics. We thoroughly evaluate our HFGaussian method against the latest state-of-the-art techniques in human Gaussian splatting and pose estimation, demonstrating its real-time, state-of-the-art performance.
November 2024. https://arxiv.org/abs/2411.03086
696 3DGS.zip: A survey on 3D Gaussian Splatting Compression Methods Milena T. Bagdasarian,Paul Knoll,Yi-Hsin Li,Florian Barthel,Anna Hilsmann,Peter Eisert,Wieland Morgenstern
Abstract3D Gaussian Splatting (3DGS) has emerged as a cutting-edge technique for real-time radiance field rendering, offering state-of-the-art performance in terms of both quality and speed. 3DGS models a scene as a collection of three-dimensional Gaussians, or splats, with additional attributes optimized to conform to the scene's geometric and visual properties. Despite its advantages in rendering speed and image fidelity, 3DGS is limited by its significant storage and memory demands. These high demands make 3DGS impractical for mobile devices or headsets, reducing its applicability in important areas of computer graphics. To address these challenges and advance the practicality of 3DGS, this survey provides a comprehensive and detailed examination of compression and compaction techniques developed to make 3DGS more efficient. We categorize current approaches into compression techniques, which aim at achieving the highest quality at minimal data size, and compaction techniques, which aim for optimal quality with the fewest Gaussians. We introduce the basic mathematical concepts underlying the analyzed methods, as well as key implementation details and design choices. Our report thoroughly discusses similarities and differences among the methods, as well as their respective advantages and disadvantages. We establish a consistent standard for comparing these methods based on key performance metrics and datasets. Specifically, since these methods have been developed in parallel and over a short period of time, currently, no comprehensive comparison exists. This survey, for the first time, presents a unified standard to evaluate 3DGS compression techniques. To facilitate the continuous monitoring of emerging methodologies, we maintain a dedicated website that will be regularly updated with new techniques and revisions of existing findings https://w-m.github.io/3dgs-compression-survey/ .
July 2024. https://arxiv.org/abs/2407.09510
695 LVI-GS: Tightly-coupled LiDAR-Visual-Inertial SLAM using 3D Gaussian Splatting Huibin Zhao,Weipeng Guan,Peng Lu
Abstract3D Gaussian Splatting (3DGS) has shown its ability in rapid rendering and high-fidelity mapping. In this paper, we introduce LVI-GS, a tightly-coupled LiDAR-Visual-Inertial mapping framework with 3DGS, which leverages the complementary characteristics of LiDAR and image sensors to capture both geometric structures and visual details of 3D scenes. To this end, the 3D Gaussians are initialized from colourized LiDAR points and optimized using differentiable rendering. In order to achieve high-fidelity mapping, we introduce a pyramid-based training approach to effectively learn multi-level features and incorporate depth loss derived from LiDAR measurements to improve geometric feature perception. Through well-designed strategies for Gaussian-Map expansion, keyframe selection, thread management, and custom CUDA acceleration, our framework achieves real-time photo-realistic mapping. Numerical experiments are performed to evaluate the superior performance of our method compared to state-of-the-art 3D reconstruction systems.
November 2024. https://arxiv.org/abs/2411.02703
694 Modeling Uncertainty in 3D Gaussian Splatting through Continuous Semantic Splatting Joey Wilson,Marcelino Almeida,Min Sun,Sachit Mahajan,Maani Ghaffari,Parker Ewen,Omid Ghasemalizadeh,Cheng-Hao Kuo,Arnie Sen
AbstractIn this paper, we present a novel algorithm for probabilistically updating and rasterizing semantic maps within 3D Gaussian Splatting (3D-GS). Although previous methods have introduced algorithms which learn to rasterize features in 3D-GS for enhanced scene understanding, 3D-GS can fail without warning which presents a challenge for safety-critical robotic applications. To address this gap, we propose a method which advances the literature of continuous semantic mapping from voxels to ellipsoids, combining the precise structure of 3D-GS with the ability to quantify uncertainty of probabilistic robotic maps. Given a set of images, our algorithm performs a probabilistic semantic update directly on the 3D ellipsoids to obtain an expectation and variance through the use of conjugate priors. We also propose a probabilistic rasterization which returns per-pixel segmentation predictions with quantifiable uncertainty. We compare our method with similar probabilistic voxel-based methods to verify our extension to 3D ellipsoids, and perform ablation studies on uncertainty quantification and temporal smoothing.
November 2024. https://arxiv.org/abs/2411.02547
693 SyncTweedies: A General Generative Framework Based on Synchronized Diffusions Jaihoon Kim,Juil Koo,Kyeongmin Yeo,Minhyuk Sung
AbstractWe introduce a general framework for generating diverse visual content, including ambiguous images, panorama images, mesh textures, and Gaussian splat textures, by synchronizing multiple diffusion processes. We present exhaustive investigation into all possible scenarios for synchronizing multiple diffusion processes through a canonical space and analyze their characteristics across applications. In doing so, we reveal a previously unexplored case: averaging the outputs of Tweedie's formula while conducting denoising in multiple instance spaces. This case also provides the best quality with the widest applicability to downstream tasks. We name this case SyncTweedies. In our experiments generating visual content aforementioned, we demonstrate the superior quality of generation by SyncTweedies compared to other synchronization methods, optimization-based and iterative-update-based methods.
March 2024. https://arxiv.org/abs/2403.14370
692 HDRGS: High Dynamic Range Gaussian Splatting Jiahao Wu,Lu Xiao,Rui Peng,Kaiqiang Xiong,Ronggang Wang
AbstractRecent years have witnessed substantial advancements in the field of 3D reconstruction from 2D images, particularly following the introduction of the neural radiance field (NeRF) technique. However, reconstructing a 3D high dynamic range (HDR) radiance field, which aligns more closely with real-world conditions, from 2D multi-exposure low dynamic range (LDR) images continues to pose significant challenges. Approaches to this issue fall into two categories: grid-based and implicit-based. Implicit methods, using multi-layer perceptrons (MLP), face inefficiencies, limited solvability, and overfitting risks. Conversely, grid-based methods require significant memory and struggle with image quality and long training times. In this paper, we introduce Gaussian Splatting-a recent, high-quality, real-time 3D reconstruction technique-into this domain. We further develop the High Dynamic Range Gaussian Splatting (HDR-GS) method, designed to address the aforementioned challenges. This method enhances color dimensionality by including luminance and uses an asymmetric grid for tone-mapping, swiftly and precisely converting pixel irradiance to color. Our approach improves HDR scene recovery accuracy and integrates a novel coarse-to-fine strategy to speed up model convergence, enhancing robustness against sparse viewpoints and exposure extremes, and preventing local optima. Extensive testing confirms that our method surpasses current state-of-the-art techniques in both synthetic and real-world scenarios.
August 2024. https://arxiv.org/abs/2408.06543
691 SplatFace: Gaussian Splat Face Reconstruction Leveraging an Optimizable Surface Jiahao Luo,Jing Liu,James Davis
AbstractWe present SplatFace, a novel Gaussian splatting framework designed for 3D human face reconstruction without reliance on accurate pre-determined geometry. Our method is designed to simultaneously deliver both high-quality novel view rendering and accurate 3D mesh reconstructions. We incorporate a generic 3D Morphable Model (3DMM) to provide a surface geometric structure, making it possible to reconstruct faces with a limited set of input images. We introduce a joint optimization strategy that refines both the Gaussians and the morphable surface through a synergistic non-rigid alignment process. A novel distance metric, splat-to-surface, is proposed to improve alignment by considering both the Gaussian position and covariance. The surface information is also utilized to incorporate a world-space densification process, resulting in superior reconstruction quality. Our experimental analysis demonstrates that the proposed method is competitive with both other Gaussian splatting techniques in novel view synthesis and other 3D reconstruction methods in producing 3D face meshes with high geometric precision.
March 2024. https://arxiv.org/abs/2403.18784
690 Real-Time Spatio-Temporal Reconstruction of Dynamic Endoscopic Scenes with 4D Gaussian Splatting Fengze Li,Jishuai He,Jieming Ma,Zhijing Wu
AbstractDynamic scene reconstruction is essential in robotic minimally invasive surgery, providing crucial spatial information that enhances surgical precision and outcomes. However, existing methods struggle to address the complex, temporally dynamic nature of endoscopic scenes. This paper presents ST-Endo4DGS, a novel framework that models the spatio-temporal volume of dynamic endoscopic scenes using unbiased 4D Gaussian Splatting (4DGS) primitives, parameterized by anisotropic ellipses with flexible 4D rotations. This approach enables precise representation of deformable tissue dynamics, capturing intricate spatial and temporal correlations in real time. Additionally, we extend spherindrical harmonics to represent time-evolving appearance, achieving realistic adaptations to lighting and view changes. A new endoscopic normal alignment constraint (ENAC) further enhances geometric fidelity by aligning rendered normals with depth-derived geometry. Extensive evaluations show that ST-Endo4DGS outperforms existing methods in both visual quality and real-time performance, establishing a new state-of-the-art in dynamic scene reconstruction for endoscopic surgery.
November 2024. https://arxiv.org/abs/2411.01218
689 CityGaussianV2: Efficient and Geometrically Accurate Reconstruction for Large-Scale Scenes Yang Liu,Chuanchen Luo,Zhongkai Mao,Junran Peng,Zhaoxiang Zhang
AbstractRecently, 3D Gaussian Splatting (3DGS) has revolutionized radiance field reconstruction, manifesting efficient and high-fidelity novel view synthesis. However, accurately representing surfaces, especially in large and complex scenarios, remains a significant challenge due to the unstructured nature of 3DGS. In this paper, we present CityGaussianV2, a novel approach for large-scale scene reconstruction that addresses critical challenges related to geometric accuracy and efficiency. Building on the favorable generalization capabilities of 2D Gaussian Splatting (2DGS), we address its convergence and scalability issues. Specifically, we implement a decomposed-gradient-based densification and depth regression technique to eliminate blurry artifacts and accelerate convergence. To scale up, we introduce an elongation filter that mitigates Gaussian count explosion caused by 2DGS degeneration. Furthermore, we optimize the CityGaussian pipeline for parallel training, achieving up to 10$\times$ compression, at least 25% savings in training time, and a 50% decrease in memory usage. We also established standard geometry benchmarks under large-scale scenes. Experimental results demonstrate that our method strikes a promising balance between visual quality, geometric accuracy, as well as storage and training costs. The project page is available at https://dekuliutesla.github.io/CityGaussianV2/.
November 2024. https://arxiv.org/abs/2411.00771
688 GeoSplatting: Towards Geometry Guided Gaussian Splatting for Physically-based Inverse Rendering Kai Ye,Chong Gao,Guanbin Li,Wenzheng Chen,Baoquan Chen
AbstractWe consider the problem of physically-based inverse rendering using 3D Gaussian Splatting (3DGS) representations. While recent 3DGS methods have achieved remarkable results in novel view synthesis (NVS), accurately capturing high-fidelity geometry, physically interpretable materials and lighting remains challenging, as it requires precise geometry modeling to provide accurate surface normals, along with physically-based rendering (PBR) techniques to ensure correct material and lighting disentanglement. Previous 3DGS methods resort to approximating surface normals, but often struggle with noisy local geometry, leading to inaccurate normal estimation and suboptimal material-lighting decomposition. In this paper, we introduce GeoSplatting, a novel hybrid representation that augments 3DGS with explicit geometric guidance and differentiable PBR equations. Specifically, we bridge isosurface and 3DGS together, where we first extract isosurface mesh from a scalar field, then convert it into 3DGS points and formulate PBR equations for them in a fully differentiable manner. In GeoSplatting, 3DGS is grounded on the mesh geometry, enabling precise surface normal modeling, which facilitates the use of PBR frameworks for material decomposition. This approach further maintains the efficiency and quality of NVS from 3DGS while ensuring accurate geometry from the isosurface. Comprehensive evaluations across diverse datasets demonstrate the superiority of GeoSplatting, consistently outperforming existing methods both quantitatively and qualitatively.
October 2024. https://arxiv.org/abs/2410.24204
687 PCoTTA: Continual Test-Time Adaptation for Multi-Task Point Cloud Understanding Jincen Jiang,Qianyu Zhou,Yuhang Li,Xinkui Zhao,Meili Wang,Lizhuang Ma,Jian Chang,Jian Jun Zhang,Xuequan Lu
AbstractIn this paper, we present PCoTTA, an innovative, pioneering framework for Continual Test-Time Adaptation (CoTTA) in multi-task point cloud understanding, enhancing the model's transferability towards the continually changing target domain. We introduce a multi-task setting for PCoTTA, which is practical and realistic, handling multiple tasks within one unified model during the continual adaptation. Our PCoTTA involves three key components: automatic prototype mixture (APM), Gaussian Splatted feature shifting (GSFS), and contrastive prototype repulsion (CPR). Firstly, APM is designed to automatically mix the source prototypes with the learnable prototypes with a similarity balancing factor, avoiding catastrophic forgetting. Then, GSFS dynamically shifts the testing sample toward the source domain, mitigating error accumulation in an online manner. In addition, CPR is proposed to pull the nearest learnable prototype close to the testing feature and push it away from other prototypes, making each prototype distinguishable during the adaptation. Experimental comparisons lead to a new benchmark, demonstrating PCoTTA's superiority in boosting the model's transferability towards the continually changing target domain.
November 2024. https://arxiv.org/abs/2411.00632
686 Aquatic-GS: A Hybrid 3D Representation for Underwater Scenes Shaohua Liu,Junzhe Lu,Zuoya Gu,Jiajun Li,Yue Deng
AbstractRepresenting underwater 3D scenes is a valuable yet complex task, as attenuation and scattering effects during underwater imaging significantly couple the information of the objects and the water. This coupling presents a significant challenge for existing methods in effectively representing both the objects and the water medium simultaneously. To address this challenge, we propose Aquatic-GS, a hybrid 3D representation approach for underwater scenes that effectively represents both the objects and the water medium. Specifically, we construct a Neural Water Field (NWF) to implicitly model the water parameters, while extending the latest 3D Gaussian Splatting (3DGS) to model the objects explicitly. Both components are integrated through a physics-based underwater image formation model to represent complex underwater scenes. Moreover, to construct more precise scene geometry and details, we design a Depth-Guided Optimization (DGO) mechanism that uses a pseudo-depth map as auxiliary guidance. After optimization, Aquatic-GS enables the rendering of novel underwater viewpoints and supports restoring the true appearance of underwater scenes, as if the water medium were absent. Extensive experiments on both simulated and real-world datasets demonstrate that Aquatic-GS surpasses state-of-the-art underwater 3D representation methods, achieving better rendering quality and real-time rendering performance with a 410x increase in speed. Furthermore, regarding underwater image restoration, Aquatic-GS outperforms representative dewatering methods in color correction, detail recovery, and stability. Our models, code, and datasets can be accessed at https://aquaticgs.github.io.
November 2024. https://arxiv.org/abs/2411.00239
685 No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images Botao Ye,Sifei Liu,Haofei Xu,Xueting Li,Marc Pollefeys,Ming-Hsuan Yang,Songyou Peng
AbstractWe introduce NoPoSplat, a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from \textit{unposed} sparse multi-view images. Our model, trained exclusively with photometric loss, achieves real-time 3D Gaussian reconstruction during inference. To eliminate the need for accurate pose input during reconstruction, we anchor one input view's local camera coordinates as the canonical space and train the network to predict Gaussian primitives for all views within this space. This approach obviates the need to transform Gaussian primitives from local coordinates into a global coordinate system, thus avoiding errors associated with per-frame Gaussians and pose estimation. To resolve scale ambiguity, we design and compare various intrinsic embedding methods, ultimately opting to convert camera intrinsics into a token embedding and concatenate it with image tokens as input to the model, enabling accurate scene scale prediction. We utilize the reconstructed 3D Gaussians for novel view synthesis and pose estimation tasks and propose a two-stage coarse-to-fine pipeline for accurate pose estimation. Experimental results demonstrate that our pose-free approach can achieve superior novel view synthesis quality compared to pose-required methods, particularly in scenarios with limited input image overlap. For pose estimation, our method, trained without ground truth depth or explicit matching loss, significantly outperforms the state-of-the-art methods with substantial improvements. This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios. Code and trained models are available at https://noposplat.github.io/.
October 2024. https://arxiv.org/abs/2410.24207
684 WildGaussians: 3D Gaussian Splatting in the Wild Jonas Kulhanek,Songyou Peng,Zuzana Kukelova,Marc Pollefeys,Torsten Sattler
AbstractWhile the field of 3D scene reconstruction is dominated by NeRFs due to their photorealistic quality, 3D Gaussian Splatting (3DGS) has recently emerged, offering similar quality with real-time rendering speeds. However, both methods primarily excel with well-controlled 3D scenes, while in-the-wild data - characterized by occlusions, dynamic objects, and varying illumination - remains challenging. NeRFs can adapt to such conditions easily through per-image embedding vectors, but 3DGS struggles due to its explicit representation and lack of shared parameters. To address this, we introduce WildGaussians, a novel approach to handle occlusions and appearance changes with 3DGS. By leveraging robust DINO features and integrating an appearance modeling module within 3DGS, our method achieves state-of-the-art results. We demonstrate that WildGaussians matches the real-time rendering speed of 3DGS while surpassing both 3DGS and NeRF baselines in handling in-the-wild data, all within a simple architectural framework.
July 2024. https://arxiv.org/abs/2407.08447
683 Subsurface Scattering for 3D Gaussian Splatting Jan-Niklas Dihlmann,Arjun Majumdar,Andreas Engelhardt,Raphael Braun,Hendrik P. A. Lensch
Abstract3D reconstruction and relighting of objects made from scattering materials present a significant challenge due to the complex light transport beneath the surface. 3D Gaussian Splatting introduced high-quality novel view synthesis at real-time speeds. While 3D Gaussians efficiently approximate an object's surface, they fail to capture the volumetric properties of subsurface scattering. We propose a framework for optimizing an object's shape together with the radiance transfer field given multi-view OLAT (one light at a time) data. Our method decomposes the scene into an explicit surface represented as 3D Gaussians, with a spatially varying BRDF, and an implicit volumetric representation of the scattering component. A learned incident light field accounts for shadowing. We optimize all parameters jointly via ray-traced differentiable rendering. Our approach enables material editing, relighting and novel view synthesis at interactive rates. We show successful application on synthetic data and introduce a newly acquired multi-view multi-light dataset of objects in a light-stage setup. Compared to previous work we achieve comparable or better results at a fraction of optimization and rendering time while enabling detailed control over material attributes. Project page https://sss.jdihlmann.com/
August 2024. https://arxiv.org/abs/2408.12282
682 GaussianMarker: Uncertainty-Aware Copyright Protection of 3D Gaussian Splatting Xiufeng Huang,Ruiqi Li,Yiu-ming Cheung,Ka Chun Cheung,Simon See,Renjie Wan
Abstract3D Gaussian Splatting (3DGS) has become a crucial method for acquiring 3D assets. To protect the copyright of these assets, digital watermarking techniques can be applied to embed ownership information discreetly within 3DGS models. However, existing watermarking methods for meshes, point clouds, and implicit radiance fields cannot be directly applied to 3DGS models, as 3DGS models use explicit 3D Gaussians with distinct structures and do not rely on neural networks. Naively embedding the watermark on a pre-trained 3DGS can cause obvious distortion in rendered images. In our work, we propose an uncertainty-based method that constrains the perturbation of model parameters to achieve invisible watermarking for 3DGS. At the message decoding stage, the copyright messages can be reliably extracted from both 3D Gaussians and 2D rendered images even under various forms of 3D and 2D distortions. We conduct extensive experiments on the Blender, LLFF and MipNeRF-360 datasets to validate the effectiveness of our proposed method, demonstrating state-of-the-art performance on both message decoding accuracy and view synthesis quality.
October 2024. https://arxiv.org/abs/2410.23718
681 Epipolar-Free 3D Gaussian Splatting for Generalizable Novel View Synthesis Zhiyuan Min,Yawei Luo,Jianwen Sun,Yi Yang
AbstractGeneralizable 3D Gaussian splitting (3DGS) can reconstruct new scenes from sparse-view observations in a feed-forward inference manner, eliminating the need for scene-specific retraining required in conventional 3DGS. However, existing methods rely heavily on epipolar priors, which can be unreliable in complex realworld scenes, particularly in non-overlapping and occluded regions. In this paper, we propose eFreeSplat, an efficient feed-forward 3DGS-based model for generalizable novel view synthesis that operates independently of epipolar line constraints. To enhance multiview feature extraction with 3D perception, we employ a selfsupervised Vision Transformer (ViT) with cross-view completion pre-training on large-scale datasets. Additionally, we introduce an Iterative Cross-view Gaussians Alignment method to ensure consistent depth scales across different views. Our eFreeSplat represents an innovative approach for generalizable novel view synthesis. Different from the existing pure geometry-free methods, eFreeSplat focuses more on achieving epipolar-free feature matching and encoding by providing 3D priors through cross-view pretraining. We evaluate eFreeSplat on wide-baseline novel view synthesis tasks using the RealEstate10K and ACID datasets. Extensive experiments demonstrate that eFreeSplat surpasses state-of-the-art baselines that rely on epipolar priors, achieving superior geometry reconstruction and novel view synthesis quality. Project page: https://tatakai1.github.io/efreesplat/.
October 2024. https://arxiv.org/abs/2410.22817
680 GS-Blur: A 3D Scene-Based Dataset for Realistic Image Deblurring Dongwoo Lee,Joonkyu Park,Kyoung Mu Lee
AbstractTo train a deblurring network, an appropriate dataset with paired blurry and sharp images is essential. Existing datasets collect blurry images either synthetically by aggregating consecutive sharp frames or using sophisticated camera systems to capture real blur. However, these methods offer limited diversity in blur types (blur trajectories) or require extensive human effort to reconstruct large-scale datasets, failing to fully reflect real-world blur scenarios. To address this, we propose GS-Blur, a dataset of synthesized realistic blurry images created using a novel approach. To this end, we first reconstruct 3D scenes from multi-view images using 3D Gaussian Splatting (3DGS), then render blurry images by moving the camera view along the randomly generated motion trajectories. By adopting various camera trajectories in reconstructing our GS-Blur, our dataset contains realistic and diverse types of blur, offering a large-scale dataset that generalizes well to real-world blur. Using GS-Blur with various deblurring methods, we demonstrate its ability to generalize effectively compared to previous synthetic or real blur datasets, showing significant improvements in deblurring performance.
October 2024. https://arxiv.org/abs/2410.23658
679 DistillNeRF: Perceiving 3D Scenes from Single-Glance Images by Distilling Neural Fields and Foundation Model Features Letian Wang,Seung Wook Kim,Jiawei Yang,Cunjun Yu,Boris Ivanovic,Steven L. Waslander,Yue Wang,Sanja Fidler,Marco Pavone,Peter Karkus
AbstractWe propose DistillNeRF, a self-supervised learning framework addressing the challenge of understanding 3D environments from limited 2D observations in outdoor autonomous driving scenes. Our method is a generalizable feedforward model that predicts a rich neural scene representation from sparse, single-frame multi-view camera inputs with limited view overlap, and is trained self-supervised with differentiable rendering to reconstruct RGB, depth, or feature images. Our first insight is to exploit per-scene optimized Neural Radiance Fields (NeRFs) by generating dense depth and virtual camera targets from them, which helps our model to learn enhanced 3D geometry from sparse non-overlapping image inputs. Second, to learn a semantically rich 3D representation, we propose distilling features from pre-trained 2D foundation models, such as CLIP or DINOv2, thereby enabling various downstream tasks without the need for costly 3D human annotations. To leverage these two insights, we introduce a novel model architecture with a two-stage lift-splat-shoot encoder and a parameterized sparse hierarchical voxel representation. Experimental results on the NuScenes and Waymo NOTR datasets demonstrate that DistillNeRF significantly outperforms existing comparable state-of-the-art self-supervised methods for scene reconstruction, novel view synthesis, and depth estimation; and it allows for competitive zero-shot 3D semantic occupancy prediction, as well as open-world scene understanding through distilled foundation model features. Demos and code will be available at https://distillnerf.github.io/.
June 2024. https://arxiv.org/abs/2406.12095
678 GeoGS3D: Single-view 3D Reconstruction via Geometric-aware Diffusion Model and Gaussian Splatting Qijun Feng,Zhen Xing,Zuxuan Wu,Yu-Gang Jiang
AbstractWe introduce GeoGS3D, a novel two-stage framework for reconstructing detailed 3D objects from single-view images. Inspired by the success of pre-trained 2D diffusion models, our method incorporates an orthogonal plane decomposition mechanism to extract 3D geometric features from the 2D input, facilitating the generation of multi-view consistent images. During the following Gaussian Splatting, these images are fused with epipolar attention, fully utilizing the geometric correlations across views. Moreover, we propose a novel metric, Gaussian Divergence Significance (GDS), to prune unnecessary operations during optimization, significantly accelerating the reconstruction process. Extensive experiments demonstrate that GeoGS3D generates images with high consistency across views and reconstructs high-quality 3D objects, both qualitatively and quantitatively.
March 2024. https://arxiv.org/abs/2403.10242
677 DisC-GS: Discontinuity-aware Gaussian Splatting Haoxuan Qu,Zhuoling Li,Hossein Rahmani,Yujun Cai,Jun Liu
AbstractRecently, Gaussian Splatting, a method that represents a 3D scene as a collection of Gaussian distributions, has gained significant attention in addressing the task of novel view synthesis. In this paper, we highlight a fundamental limitation of Gaussian Splatting: its inability to accurately render discontinuities and boundaries in images due to the continuous nature of Gaussian distributions. To address this issue, we propose a novel framework enabling Gaussian Splatting to perform discontinuity-aware image rendering. Additionally, we introduce a B\xc3\xa9zier-boundary gradient approximation strategy within our framework to keep the "differentiability" of the proposed discontinuity-aware rendering process. Extensive experiments demonstrate the efficacy of our framework.
May 2024. https://arxiv.org/abs/2405.15196
676 ELMGS: Enhancing memory and computation scaLability through coMpression for 3D Gaussian Splatting Muhammad Salman Ali,Sung-Ho Bae,Enzo Tartaglione
Abstract3D models have recently been popularized by the potentiality of end-to-end training offered first by Neural Radiance Fields and most recently by 3D Gaussian Splatting models. The latter has the big advantage of naturally providing fast training convergence and high editability. However, as the research around these is still in its infancy, there is still a gap in the literature regarding the model's scalability. In this work, we propose an approach enabling both memory and computation scalability of such models. More specifically, we propose an iterative pruning strategy that removes redundant information encoded in the model. We also enhance compressibility for the model by including in the optimization strategy a differentiable quantization and entropy coding estimator. Our results on popular benchmarks showcase the effectiveness of the proposed approach and open the road to the broad deployability of such a solution even on resource-constrained devices.
October 2024. https://arxiv.org/abs/2410.23213
675 HumanSplat: Generalizable Single-Image Human Gaussian Splatting with Structure Priors Panwang Pan,Zhuo Su,Chenguo Lin,Zhen Fan,Yongjie Zhang,Zeming Li,Tingting Shen,Yadong Mu,Yebin Liu
AbstractDespite recent advancements in high-fidelity human reconstruction techniques, the requirements for densely captured images or time-consuming per-instance optimization significantly hinder their applications in broader scenarios. To tackle these issues, we present HumanSplat which predicts the 3D Gaussian Splatting properties of any human from a single input image in a generalizable manner. In particular, HumanSplat comprises a 2D multi-view diffusion model and a latent reconstruction transformer with human structure priors that adeptly integrate geometric priors and semantic features within a unified framework. A hierarchical loss that incorporates human semantic information is further designed to achieve high-fidelity texture modeling and better constrain the estimated multiple views. Comprehensive experiments on standard benchmarks and in-the-wild images demonstrate that HumanSplat surpasses existing state-of-the-art methods in achieving photorealistic novel-view synthesis.
June 2024. https://arxiv.org/abs/2406.12459
674 ES-Gaussian: Gaussian Splatting Mapping via Error Space-Based Gaussian Completion Lu Chen,Yingfu Zeng,Haoang Li,Zhitao Deng,Jiafu Yan,Zhenjun Zhao
AbstractAccurate and affordable indoor 3D reconstruction is critical for effective robot navigation and interaction. Traditional LiDAR-based mapping provides high precision but is costly, heavy, and power-intensive, with limited ability for novel view rendering. Vision-based mapping, while cost-effective and capable of capturing visual data, often struggles with high-quality 3D reconstruction due to sparse point clouds. We propose ES-Gaussian, an end-to-end system using a low-altitude camera and single-line LiDAR for high-quality 3D indoor reconstruction. Our system features Visual Error Construction (VEC) to enhance sparse point clouds by identifying and correcting areas with insufficient geometric detail from 2D error maps. Additionally, we introduce a novel 3DGS initialization method guided by single-line LiDAR, overcoming the limitations of traditional multi-view setups and enabling effective reconstruction in resource-constrained environments. Extensive experimental results on our new Dreame-SR dataset and a publicly available dataset demonstrate that ES-Gaussian outperforms existing methods, particularly in challenging scenarios. The project page is available at https://chenlu-china.github.io/ES-Gaussian/.
October 2024. https://arxiv.org/abs/2410.06613
673 VCR-GauS: View Consistent Depth-Normal Regularizer for Gaussian Surface Reconstruction Hanlin Chen,Fangyin Wei,Chen Li,Tianxin Huang,Yunsong Wang,Gim Hee Lee
AbstractAlthough 3D Gaussian Splatting has been widely studied because of its realistic and efficient novel-view synthesis, it is still challenging to extract a high-quality surface from the point-based representation. Previous works improve the surface by incorporating geometric priors from the off-the-shelf normal estimator. However, there are two main limitations: 1) Supervising normals rendered from 3D Gaussians effectively updates the rotation parameter but is less effective for other geometric parameters; 2) The inconsistency of predicted normal maps across multiple views may lead to severe reconstruction artifacts. In this paper, we propose a Depth-Normal regularizer that directly couples normal with other geometric parameters, leading to full updates of the geometric parameters from normal regularization. We further propose a confidence term to mitigate inconsistencies of normal predictions across multiple views. Moreover, we also introduce a densification and splitting strategy to regularize the size and distribution of 3D Gaussians for more accurate surface modeling. Compared with Gaussian-based baselines, experiments show that our approach obtains better reconstruction quality and maintains competitive appearance quality at faster training speed and 100+ FPS rendering.
June 2024. https://arxiv.org/abs/2406.05774
672 Geometry Cloak: Preventing TGS-based 3D Reconstruction from Copyrighted Images Qi Song,Ziyuan Luo,Ka Chun Cheung,Simon See,Renjie Wan
AbstractSingle-view 3D reconstruction methods like Triplane Gaussian Splatting (TGS) have enabled high-quality 3D model generation from just a single image input within seconds. However, this capability raises concerns about potential misuse, where malicious users could exploit TGS to create unauthorized 3D models from copyrighted images. To prevent such infringement, we propose a novel image protection approach that embeds invisible geometry perturbations, termed "geometry cloaks", into images before supplying them to TGS. These carefully crafted perturbations encode a customized message that is revealed when TGS attempts 3D reconstructions of the cloaked image. Unlike conventional adversarial attacks that simply degrade output quality, our method forces TGS to fail the 3D reconstruction in a specific way - by generating an identifiable customized pattern that acts as a watermark. This watermark allows copyright holders to assert ownership over any attempted 3D reconstructions made from their protected images. Extensive experiments have verified the effectiveness of our geometry cloak. Our project is available at https://qsong2001.github.io/geometry_cloak.
October 2024. https://arxiv.org/abs/2410.22705
671 DiffGS: Functional Gaussian Splatting Diffusion Junsheng Zhou,Weiqi Zhang,Yu-Shen Liu
Abstract3D Gaussian Splatting (3DGS) has shown convincing performance in rendering speed and fidelity, yet the generation of Gaussian Splatting remains a challenge due to its discreteness and unstructured nature. In this work, we propose DiffGS, a general Gaussian generator based on latent diffusion models. DiffGS is a powerful and efficient 3D generative model which is capable of generating Gaussian primitives at arbitrary numbers for high-fidelity rendering with rasterization. The key insight is to represent Gaussian Splatting in a disentangled manner via three novel functions to model Gaussian probabilities, colors and transforms. Through the novel disentanglement of 3DGS, we represent the discrete and unstructured 3DGS with continuous Gaussian Splatting functions, where we then train a latent diffusion model with the target of generating these Gaussian Splatting functions both unconditionally and conditionally. Meanwhile, we introduce a discretization algorithm to extract Gaussians at arbitrary numbers from the generated functions via octree-guided sampling and optimization. We explore DiffGS for various tasks, including unconditional generation, conditional generation from text, image, and partial 3DGS, as well as Point-to-Gaussian generation. We believe that DiffGS provides a new direction for flexibly modeling and generating Gaussian Splatting.
October 2024. https://arxiv.org/abs/2410.19657
670 EVER: Exact Volumetric Ellipsoid Rendering for Real-time View Synthesis Alexander Mai,Peter Hedman,George Kopanas,Dor Verbin,David Futschik,Qiangeng Xu,Falko Kuester,Jonathan T. Barron,Yinda Zhang
AbstractWe present Exact Volumetric Ellipsoid Rendering (EVER), a method for real-time differentiable emission-only volume rendering. Unlike recent rasterization based approach by 3D Gaussian Splatting (3DGS), our primitive based representation allows for exact volume rendering, rather than alpha compositing 3D Gaussian billboards. As such, unlike 3DGS our formulation does not suffer from popping artifacts and view dependent density, but still achieves frame rates of $\sim\!30$ FPS at 720p on an NVIDIA RTX4090. Since our approach is built upon ray tracing it enables effects such as defocus blur and camera distortion (e.g. such as from fisheye cameras), which are difficult to achieve by rasterization. We show that our method is more accurate with fewer blending issues than 3DGS and follow-up work on view-consistent rendering, especially on the challenging large-scale scenes from the Zip-NeRF dataset where it achieves sharpest results among real-time techniques.
October 2024. https://arxiv.org/abs/2410.01804
669 GStex: Per-Primitive Texturing of 2D Gaussian Splatting for Decoupled Appearance and Geometry Modeling Victor Rong,Jingxiang Chen,Sherwin Bahmani,Kiriakos N. Kutulakos,David B. Lindell
AbstractGaussian splatting has demonstrated excellent performance for view synthesis and scene reconstruction. The representation achieves photorealistic quality by optimizing the position, scale, color, and opacity of thousands to millions of 2D or 3D Gaussian primitives within a scene. However, since each Gaussian primitive encodes both appearance and geometry, these attributes are strongly coupled--thus, high-fidelity appearance modeling requires a large number of Gaussian primitives, even when the scene geometry is simple (e.g., for a textured planar surface). We propose to texture each 2D Gaussian primitive so that even a single Gaussian can be used to capture appearance details. By employing per-primitive texturing, our appearance representation is agnostic to the topology and complexity of the scene's geometry. We show that our approach, GStex, yields improved visual quality over prior work in texturing Gaussian splats. Furthermore, we demonstrate that our decoupling enables improved novel view synthesis performance compared to 2D Gaussian splatting when reducing the number of Gaussian primitives, and that GStex can be used for scene appearance editing and re-texturing.
September 2024. https://arxiv.org/abs/2409.12954
668 GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction Yuxuan Mu,Xinxin Zuo,Chuan Guo,Yilin Wang,Juwei Lu,Xiaofeng Wu,Songcen Xu,Peng Dai,Youliang Yan,Li Cheng
AbstractWe present GSD, a diffusion model approach based on Gaussian Splatting (GS) representation for 3D object reconstruction from a single view. Prior works suffer from inconsistent 3D geometry or mediocre rendering quality due to improper representations. We take a step towards resolving these shortcomings by utilizing the recent state-of-the-art 3D explicit representation, Gaussian Splatting, and an unconditional diffusion model. This model learns to generate 3D objects represented by sets of GS ellipsoids. With these strong generative 3D priors, though learning unconditionally, the diffusion model is ready for view-guided reconstruction without further model fine-tuning. This is achieved by propagating fine-grained 2D features through the efficient yet flexible splatting function and the guided denoising sampling process. In addition, a 2D diffusion model is further employed to enhance rendering fidelity, and improve reconstructed GS quality by polishing and re-using the rendered images. The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views. Experiments on the challenging real-world CO3D dataset demonstrate the superiority of our approach. Project page: https://yxmu.foo/GSD/
July 2024. https://arxiv.org/abs/2407.04237
667 PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting Sunghwan Hong,Jaewoo Jung,Heeseong Shin,Jisang Han,Jiaolong Yang,Chong Luo,Seungryong Kim
AbstractWe consider the problem of novel view synthesis from unposed images in a single feed-forward. Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS, where we further extend it to offer a practical solution that relaxes common assumptions such as dense image views, accurate camera poses, and substantial image overlaps. We achieve this through identifying and addressing unique challenges arising from the use of pixel-aligned 3DGS: misaligned 3D Gaussians across different views induce noisy or sparse gradients that destabilize training and hinder convergence, especially when above assumptions are not met. To mitigate this, we employ pre-trained monocular depth estimation and visual correspondence models to achieve coarse alignments of 3D Gaussians. We then introduce lightweight, learnable modules to refine depth and pose estimates from the coarse alignments, improving the quality of 3D reconstruction and novel view synthesis. Furthermore, the refined estimates are leveraged to estimate geometry confidence scores, which assess the reliability of 3D Gaussian centers and condition the prediction of Gaussian parameters accordingly. Extensive evaluations on large-scale real-world datasets demonstrate that PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
October 2024. https://arxiv.org/abs/2410.22128
666 FreeGaussian: Guidance-free Controllable 3D Gaussian Splats with Flow Derivatives Qizhi Chen,Delin Qu,Yiwen Tang,Haoming Song,Yiting Zhang,Dong Wang,Bin Zhao,Xuelong Li
AbstractReconstructing controllable Gaussian splats from monocular video is a challenging task due to its inherently insufficient constraints. Widely adopted approaches supervise complex interactions with additional masks and control signal annotations, limiting their real-world applications. In this paper, we propose an annotation guidance-free method, dubbed FreeGaussian, that mathematically derives dynamic Gaussian motion from optical flow and camera motion using novel dynamic Gaussian constraints. By establishing a connection between 2D flows and 3D Gaussian dynamic control, our method enables self-supervised optimization and continuity of dynamic Gaussian motions from flow priors. Furthermore, we introduce a 3D spherical vector controlling scheme, which represents the state with a 3D Gaussian trajectory, thereby eliminating the need for complex 1D control signal calculations and simplifying controllable Gaussian modeling. Quantitative and qualitative evaluations on extensive experiments demonstrate the state-of-the-art visual performance and control capability of our method. Project page: https://freegaussian.github.io.
October 2024. https://arxiv.org/abs/2410.22070
665 DOGS: Distributed-Oriented Gaussian Splatting for Large-Scale 3D Reconstruction Via Gaussian Consensus Yu Chen,Gim Hee Lee
AbstractThe recent advances in 3D Gaussian Splatting (3DGS) show promising results on the novel view synthesis (NVS) task. With its superior rendering performance and high-fidelity rendering quality, 3DGS is excelling at its previous NeRF counterparts. The most recent 3DGS method focuses either on improving the instability of rendering efficiency or reducing the model size. On the other hand, the training efficiency of 3DGS on large-scale scenes has not gained much attention. In this work, we propose DoGaussian, a method that trains 3DGS distributedly. Our method first decomposes a scene into K blocks and then introduces the Alternating Direction Method of Multipliers (ADMM) into the training procedure of 3DGS. During training, our DOGS maintains one global 3DGS model on the master node and K local 3DGS models on the slave nodes. The K local 3DGS models are dropped after training and we only query the global 3DGS model during inference. The training time is reduced by scene decomposition, and the training convergence and stability are guaranteed through the consensus on the shared 3D Gaussians. Our method accelerates the training of 3DGS by 6+ times when evaluated on large-scale scenes while concurrently achieving state-of-the-art rendering quality. Our code is publicly available at https://github.com/AIBluefisher/DOGS.
May 2024. https://arxiv.org/abs/2405.13943
664 ActiveSplat: High-Fidelity Scene Reconstruction through Active Gaussian Splatting Yuetao Li,Zijia Kuang,Ting Li,Guyue Zhou,Shaohui Zhang,Zike Yan
AbstractWe propose ActiveSplat, an autonomous high-fidelity reconstruction system leveraging Gaussian splatting. Taking advantage of efficient and realistic rendering, the system establishes a unified framework for online mapping, viewpoint selection, and path planning. The key to ActiveSplat is a hybrid map representation that integrates both dense information about the environment and a sparse abstraction of the workspace. Therefore, the system leverages sparse topology for efficient viewpoint sampling and path planning, while exploiting view-dependent dense prediction for viewpoint selection, facilitating efficient decision-making with promising accuracy and completeness. A hierarchical planning strategy based on the topological map is adopted to mitigate repetitive trajectories and improve local granularity given limited budgets, ensuring high-fidelity reconstruction with photorealistic view synthesis. Extensive experiments and ablation studies validate the efficacy of the proposed method in terms of reconstruction accuracy, data coverage, and exploration efficiency. Project page: https://li-yuetao.github.io/ActiveSplat/.
October 2024. https://arxiv.org/abs/2410.21955
663 MoDGS: Dynamic Gaussian Splatting from Casually-captured Monocular Videos Qingming Liu,Yuan Liu,Jiepeng Wang,Xianqiang Lyv,Peng Wang,Wenping Wang,Junhui Hou
AbstractIn this paper, we propose MoDGS, a new pipeline to render novel views of dy namic scenes from a casually captured monocular video. Previous monocular dynamic NeRF or Gaussian Splatting methods strongly rely on the rapid move ment of input cameras to construct multiview consistency but struggle to recon struct dynamic scenes on casually captured input videos whose cameras are either static or move slowly. To address this challenging task, MoDGS adopts recent single-view depth estimation methods to guide the learning of the dynamic scene. Then, a novel 3D-aware initialization method is proposed to learn a reasonable deformation field and a new robust depth loss is proposed to guide the learning of dynamic scene geometry. Comprehensive experiments demonstrate that MoDGS is able to render high-quality novel view images of dynamic scenes from just a casually captured monocular video, which outperforms state-of-the-art meth ods by a significant margin. The code will be publicly available.
June 2024. https://arxiv.org/abs/2406.00434
662 FreeSplat: Generalizable 3D Gaussian Splatting Towards Free-View Synthesis of Indoor Scenes Yunsong Wang,Tianxin Huang,Hanlin Chen,Gim Hee Lee
AbstractEmpowering 3D Gaussian Splatting with generalization ability is appealing. However, existing generalizable 3D Gaussian Splatting methods are largely confined to narrow-range interpolation between stereo images due to their heavy backbones, thus lacking the ability to accurately localize 3D Gaussian and support free-view synthesis across wide view range. In this paper, we present a novel framework FreeSplat that is capable of reconstructing geometrically consistent 3D scenes from long sequence input towards free-view synthesis.Specifically, we firstly introduce Low-cost Cross-View Aggregation achieved by constructing adaptive cost volumes among nearby views and aggregating features using a multi-scale structure. Subsequently, we present the Pixel-wise Triplet Fusion to eliminate redundancy of 3D Gaussians in overlapping view regions and to aggregate features observed across multiple views. Additionally, we propose a simple but effective free-view training strategy that ensures robust view synthesis across broader view range regardless of the number of views. Our empirical results demonstrate state-of-the-art novel view synthesis peformances in both novel view rendered color maps quality and depth maps accuracy across different numbers of input views. We also show that FreeSplat performs inference more efficiently and can effectively reduce redundant Gaussians, offering the possibility of feed-forward large scene reconstruction without depth priors.
May 2024. https://arxiv.org/abs/2405.17958
661 MVSDet: Multi-View Indoor 3D Object Detection via Efficient Plane Sweeps Yating Xu,Chen Li,Gim Hee Lee
AbstractThe key challenge of multi-view indoor 3D object detection is to infer accurate geometry information from images for precise 3D detection. Previous method relies on NeRF for geometry reasoning. However, the geometry extracted from NeRF is generally inaccurate, which leads to sub-optimal detection performance. In this paper, we propose MVSDet which utilizes plane sweep for geometry-aware 3D object detection. To circumvent the requirement for a large number of depth planes for accurate depth prediction, we design a probabilistic sampling and soft weighting mechanism to decide the placement of pixel features on the 3D volume. We select multiple locations that score top in the probability volume for each pixel and use their probability score to indicate the confidence. We further apply recent pixel-aligned Gaussian Splatting to regularize depth prediction and improve detection performance with little computation overhead. Extensive experiments on ScanNet and ARKitScenes datasets are conducted to show the superiority of our model. Our code is available at https://github.com/Pixie8888/MVSDet.
October 2024. https://arxiv.org/abs/2410.21566
660 Grid4D: 4D Decomposed Hash Encoding for High-fidelity Dynamic Gaussian Splatting Jiawei Xu,Zexin Fan,Jian Yang,Jin Xie
AbstractRecently, Gaussian splatting has received more and more attention in the field of static scene rendering. Due to the low computational overhead and inherent flexibility of explicit representations, plane-based explicit methods are popular ways to predict deformations for Gaussian-based dynamic scene rendering models. However, plane-based methods rely on the inappropriate low-rank assumption and excessively decompose the space-time 4D encoding, resulting in overmuch feature overlap and unsatisfactory rendering quality. To tackle these problems, we propose Grid4D, a dynamic scene rendering model based on Gaussian splatting and employing a novel explicit encoding method for the 4D input through the hash encoding. Different from plane-based explicit representations, we decompose the 4D encoding into one spatial and three temporal 3D hash encodings without the low-rank assumption. Additionally, we design a novel attention module that generates the attention scores in a directional range to aggregate the spatial and temporal features. The directional attention enables Grid4D to more accurately fit the diverse deformations across distinct scene components based on the spatial encoded features. Moreover, to mitigate the inherent lack of smoothness in explicit representation methods, we introduce a smooth regularization term that keeps our model from the chaos of deformation prediction. Our experiments demonstrate that Grid4D significantly outperforms the state-of-the-art models in visual quality and rendering speed.
October 2024. https://arxiv.org/abs/2410.20815
659 LoDAvatar: Hierarchical Embedding and Adaptive Levels of Detail with Gaussian Splatting for Enhanced Human Avatars Xiaonuo Dongye,Hanzhi Guo,Le Luo,Haiyan Jiang,Yihua Bao,Zeyu Tian,Dongdong Weng
AbstractWith the advancement of virtual reality, the demand for 3D human avatars is increasing. The emergence of Gaussian Splatting technology has enabled the rendering of Gaussian avatars with superior visual quality and reduced computational costs. Despite numerous methods researchers propose for implementing drivable Gaussian avatars, limited attention has been given to balancing visual quality and computational costs. In this paper, we introduce LoDAvatar, a method that introduces levels of detail into Gaussian avatars through hierarchical embedding and selective detail enhancement methods. The key steps of LoDAvatar encompass data preparation, Gaussian embedding, Gaussian optimization, and selective detail enhancement. We conducted experiments involving Gaussian avatars at various levels of detail, employing both objective assessments and subjective evaluations. The outcomes indicate that incorporating levels of detail into Gaussian avatars can decrease computational costs during rendering while upholding commendable visual quality, thereby enhancing runtime frame rates. We advocate adopting LoDAvatar to render multiple dynamic Gaussian avatars or extensive Gaussian scenes to balance visual quality and computational costs.
October 2024. https://arxiv.org/abs/2410.20789
658 CompGS: Unleashing 2D Compositionality for Compositional Text-to-3D via Dynamically Optimizing 3D Gaussians Chongjian Ge,Chenfeng Xu,Yuanfeng Ji,Chensheng Peng,Masayoshi Tomizuka,Ping Luo,Mingyu Ding,Varun Jampani,Wei Zhan
AbstractRecent breakthroughs in text-guided image generation have significantly advanced the field of 3D generation. While generating a single high-quality 3D object is now feasible, generating multiple objects with reasonable interactions within a 3D space, a.k.a. compositional 3D generation, presents substantial challenges. This paper introduces CompGS, a novel generative framework that employs 3D Gaussian Splatting (GS) for efficient, compositional text-to-3D content generation. To achieve this goal, two core designs are proposed: (1) 3D Gaussians Initialization with 2D compositionality: We transfer the well-established 2D compositionality to initialize the Gaussian parameters on an entity-by-entity basis, ensuring both consistent 3D priors for each entity and reasonable interactions among multiple entities; (2) Dynamic Optimization: We propose a dynamic strategy to optimize 3D Gaussians using Score Distillation Sampling (SDS) loss. CompGS first automatically decomposes 3D Gaussians into distinct entity parts, enabling optimization at both the entity and composition levels. Additionally, CompGS optimizes across objects of varying scales by dynamically adjusting the spatial parameters of each entity, enhancing the generation of fine-grained details, particularly in smaller entities. Qualitative comparisons and quantitative evaluations on T3Bench demonstrate the effectiveness of CompGS in generating compositional 3D objects with superior image quality and semantic alignment over existing methods. CompGS can also be easily extended to controllable 3D editing, facilitating scene generation. We hope CompGS will provide new insights to the compositional 3D generation. Project page: https://chongjiange.github.io/compgs.html.
October 2024. https://arxiv.org/abs/2410.20723
657 ODGS: 3D Scene Reconstruction from Omnidirectional Images with 3D Gaussian Splattings Suyoung Lee,Jaeyoung Chung,Jaeyoo Huh,Kyoung Mu Lee
AbstractOmnidirectional (or 360-degree) images are increasingly being used for 3D applications since they allow the rendering of an entire scene with a single image. Existing works based on neural radiance fields demonstrate successful 3D reconstruction quality on egocentric videos, yet they suffer from long training and rendering times. Recently, 3D Gaussian splatting has gained attention for its fast optimization and real-time rendering. However, directly using a perspective rasterizer to omnidirectional images results in severe distortion due to the different optical properties between two image domains. In this work, we present ODGS, a novel rasterization pipeline for omnidirectional images, with geometric interpretation. For each Gaussian, we define a tangent plane that touches the unit sphere and is perpendicular to the ray headed toward the Gaussian center. We then leverage a perspective camera rasterizer to project the Gaussian onto the corresponding tangent plane. The projected Gaussians are transformed and combined into the omnidirectional image, finalizing the omnidirectional rasterization process. This interpretation reveals the implicit assumptions within the proposed pipeline, which we verify through mathematical proofs. The entire rasterization process is parallelized using CUDA, achieving optimization and rendering speeds 100 times faster than NeRF-based methods. Our comprehensive experiments highlight the superiority of ODGS by delivering the best reconstruction and perceptual quality across various datasets. Additionally, results on roaming datasets demonstrate that ODGS restores fine details effectively, even when reconstructing large 3D scenes. The source code is available on our project page (https://github.com/esw0116/ODGS).
October 2024. https://arxiv.org/abs/2410.20686
656 Normal-GS: 3D Gaussian Splatting with Normal-Involved Rendering Meng Wei,Qianyi Wu,Jianmin Zheng,Hamid Rezatofighi,Jianfei Cai
AbstractRendering and reconstruction are long-standing topics in computer vision and graphics. Achieving both high rendering quality and accurate geometry is a challenge. Recent advancements in 3D Gaussian Splatting (3DGS) have enabled high-fidelity novel view synthesis at real-time speeds. However, the noisy and discrete nature of 3D Gaussian primitives hinders accurate surface estimation. Previous attempts to regularize 3D Gaussian normals often degrade rendering quality due to the fundamental disconnect between normal vectors and the rendering pipeline in 3DGS-based methods. Therefore, we introduce Normal-GS, a novel approach that integrates normal vectors into the 3DGS rendering pipeline. The core idea is to model the interaction between normals and incident lighting using the physically-based rendering equation. Our approach re-parameterizes surface colors as the product of normals and a designed Integrated Directional Illumination Vector (IDIV). To optimize memory usage and simplify optimization, we employ an anchor-based 3DGS to implicitly encode locally-shared IDIVs. Additionally, Normal-GS leverages optimized normals and Integrated Directional Encoding (IDE) to accurately model specular effects, enhancing both rendering quality and surface normal precision. Extensive experiments demonstrate that Normal-GS achieves near state-of-the-art visual quality while obtaining accurate surface normals and preserving real-time rendering performance.
October 2024. https://arxiv.org/abs/2410.20593
655 R$^2$-Gaussian: Rectifying Radiative Gaussian Splatting for Tomographic Reconstruction Ruyi Zha,Tao Jun Lin,Yuanhao Cai,Jiwen Cao,Yanhao Zhang,Hongdong Li
Abstract3D Gaussian splatting (3DGS) has shown promising results in image rendering and surface reconstruction. However, its potential in volumetric reconstruction tasks, such as X-ray computed tomography, remains under-explored. This paper introduces R$^2$-Gaussian, the first 3DGS-based framework for sparse-view tomographic reconstruction. By carefully deriving X-ray rasterization functions, we discover a previously unknown integration bias in the standard 3DGS formulation, which hampers accurate volume retrieval. To address this issue, we propose a novel rectification technique via refactoring the projection from 3D to 2D Gaussians. Our new method presents three key innovations: (1) introducing tailored Gaussian kernels, (2) extending rasterization to X-ray imaging, and (3) developing a CUDA-based differentiable voxelizer. Experiments on synthetic and real-world datasets demonstrate that our method outperforms state-of-the-art approaches in accuracy and efficiency. Crucially, it delivers high-quality results in 4 minutes, which is 12$\times$ faster than NeRF-based methods and on par with traditional algorithms. Code and models are available on the project page https://github.com/Ruyi-Zha/r2_gaussian.
May 2024. https://arxiv.org/abs/2405.20693
654 Binocular-Guided 3D Gaussian Splatting with View Consistency for Sparse View Synthesis Liang Han,Junsheng Zhou,Yu-Shen Liu,Zhizhong Han
AbstractNovel view synthesis from sparse inputs is a vital yet challenging task in 3D computer vision. Previous methods explore 3D Gaussian Splatting with neural priors (e.g. depth priors) as an additional supervision, demonstrating promising quality and efficiency compared to the NeRF based methods. However, the neural priors from 2D pretrained models are often noisy and blurry, which struggle to precisely guide the learning of radiance fields. In this paper, We propose a novel method for synthesizing novel views from sparse views with Gaussian Splatting that does not require external prior as supervision. Our key idea lies in exploring the self-supervisions inherent in the binocular stereo consistency between each pair of binocular images constructed with disparity-guided image warping. To this end, we additionally introduce a Gaussian opacity constraint which regularizes the Gaussian locations and avoids Gaussian redundancy for improving the robustness and efficiency of inferring 3D Gaussians from sparse views. Extensive experiments on the LLFF, DTU, and Blender datasets demonstrate that our method significantly outperforms the state-of-the-art methods.
October 2024. https://arxiv.org/abs/2410.18822
653 Neural Fields in Robotics: A Survey Muhammad Zubair Irshad,Mauro Comi,Yen-Chen Lin,Nick Heppert,Abhinav Valada,Rares Ambrus,Zsolt Kira,Jonathan Tremblay
AbstractNeural Fields have emerged as a transformative approach for 3D scene representation in computer vision and robotics, enabling accurate inference of geometry, 3D semantics, and dynamics from posed 2D data. Leveraging differentiable rendering, Neural Fields encompass both continuous implicit and explicit neural representations enabling high-fidelity 3D reconstruction, integration of multi-modal sensor data, and generation of novel viewpoints. This survey explores their applications in robotics, emphasizing their potential to enhance perception, planning, and control. Their compactness, memory efficiency, and differentiability, along with seamless integration with foundation and generative models, make them ideal for real-time applications, improving robot adaptability and decision-making. This paper provides a thorough review of Neural Fields in robotics, categorizing applications across various domains and evaluating their strengths and limitations, based on over 200 papers. First, we present four key Neural Fields frameworks: Occupancy Networks, Signed Distance Fields, Neural Radiance Fields, and Gaussian Splatting. Second, we detail Neural Fields' applications in five major robotics domains: pose estimation, manipulation, navigation, physics, and autonomous driving, highlighting key works and discussing takeaways and open challenges. Finally, we outline the current limitations of Neural Fields in robotics and propose promising directions for future research. Project page: https://robonerf.github.io
October 2024. https://arxiv.org/abs/2410.20220
652 HDR-GS: Efficient High Dynamic Range Novel View Synthesis at 1000x Speed via Gaussian Splatting Yuanhao Cai,Zihao Xiao,Yixun Liang,Minghan Qin,Yulun Zhang,Xiaokang Yang,Yaoyao Liu,Alan Yuille
AbstractHigh dynamic range (HDR) novel view synthesis (NVS) aims to create photorealistic images from novel viewpoints using HDR imaging techniques. The rendered HDR images capture a wider range of brightness levels containing more details of the scene than normal low dynamic range (LDR) images. Existing HDR NVS methods are mainly based on NeRF. They suffer from long training time and slow inference speed. In this paper, we propose a new framework, High Dynamic Range Gaussian Splatting (HDR-GS), which can efficiently render novel HDR views and reconstruct LDR images with a user input exposure time. Specifically, we design a Dual Dynamic Range (DDR) Gaussian point cloud model that uses spherical harmonics to fit HDR color and employs an MLP-based tone-mapper to render LDR color. The HDR and LDR colors are then fed into two Parallel Differentiable Rasterization (PDR) processes to reconstruct HDR and LDR views. To establish the data foundation for the research of 3D Gaussian splatting-based methods in HDR NVS, we recalibrate the camera parameters and compute the initial positions for Gaussian point clouds. Experiments demonstrate that our HDR-GS surpasses the state-of-the-art NeRF-based method by 3.84 and 1.91 dB on LDR and HDR NVS while enjoying 1000x inference speed and only requiring 6.3% training time. Code and recalibrated data will be publicly available at https://github.com/caiyuanhao1998/HDR-GS . A brief video introduction of our work is available at https://youtu.be/wtU7Kcwe7ck
May 2024. https://arxiv.org/abs/2405.15125
651 Radiative Gaussian Splatting for Efficient X-ray Novel View Synthesis Yuanhao Cai,Yixun Liang,Jiahao Wang,Angtian Wang,Yulun Zhang,Xiaokang Yang,Zongwei Zhou,Alan Yuille
AbstractX-ray is widely applied for transmission imaging due to its stronger penetration than natural light. When rendering novel view X-ray projections, existing methods mainly based on NeRF suffer from long training time and slow inference speed. In this paper, we propose a 3D Gaussian splatting-based framework, namely X-Gaussian, for X-ray novel view synthesis. Firstly, we redesign a radiative Gaussian point cloud model inspired by the isotropic nature of X-ray imaging. Our model excludes the influence of view direction when learning to predict the radiation intensity of 3D points. Based on this model, we develop a Differentiable Radiative Rasterization (DRR) with CUDA implementation. Secondly, we customize an Angle-pose Cuboid Uniform Initialization (ACUI) strategy that directly uses the parameters of the X-ray scanner to compute the camera information and then uniformly samples point positions within a cuboid enclosing the scanned object. Experiments show that our X-Gaussian outperforms state-of-the-art methods by 6.5 dB while enjoying less than 15% training time and over 73x inference speed. The application on sparse-view CT reconstruction also reveals the practical values of our method. Code is publicly available at https://github.com/caiyuanhao1998/X-Gaussian . A video demo of the training process visualization is at https://www.youtube.com/watch?v=gDVf_Ngeghg .
March 2024. https://arxiv.org/abs/2403.04116
650 Robotic Learning in your Backyard: A Neural Simulator from Open Source Components Liyou Zhou,Oleg Sinavski,Athanasios Polydoros
AbstractThe emergence of 3D Gaussian Splatting for fast and high-quality novel view synthesize has opened up the possibility to construct photo-realistic simulations from video for robotic reinforcement learning. While the approach has been demonstrated in several research papers, the software tools used to build such a simulator remain unavailable or proprietary. We present SplatGym, an open source neural simulator for training data-driven robotic control policies. The simulator creates a photorealistic virtual environment from a single video. It supports ego camera view generation, collision detection, and virtual object in-painting. We demonstrate training several visual navigation policies via reinforcement learning. SplatGym represents a notable first step towards an open-source general-purpose neural environment for robotic learning. It broadens the range of applications that can effectively utilise reinforcement learning by providing convenient and unrestricted tooling, and by eliminating the need for the manual development of conventional 3D environments.
October 2024. https://arxiv.org/abs/2410.19564
649 Content-Aware Radiance Fields: Aligning Model Complexity with Scene Intricacy Through Learned Bitwidth Quantization Weihang Liu,Xue Xian Zheng,Jingyi Yu,Xin Lou
AbstractThe recent popular radiance field models, exemplified by Neural Radiance Fields (NeRF), Instant-NGP and 3D Gaussian Splatting, are designed to represent 3D content by that training models for each individual scene. This unique characteristic of scene representation and per-scene training distinguishes radiance field models from other neural models, because complex scenes necessitate models with higher representational capacity and vice versa. In this paper, we propose content-aware radiance fields, aligning the model complexity with the scene intricacies through Adversarial Content-Aware Quantization (A-CAQ). Specifically, we make the bitwidth of parameters differentiable and trainable, tailored to the unique characteristics of specific scenes and requirements. The proposed framework has been assessed on Instant-NGP, a well-known NeRF variant and evaluated using various datasets. Experimental results demonstrate a notable reduction in computational complexity, while preserving the requisite reconstruction and rendering quality, making it beneficial for practical deployment of radiance fields models. Codes are available at https://github.com/WeihangLiu2024/Content_Aware_NeRF.
October 2024. https://arxiv.org/abs/2410.19483
648 ArCSEM: Artistic Colorization of SEM Images via Gaussian Splatting Takuma Nishimura,Andreea Dogaru,Martin Oeggerli,Bernhard Egger
AbstractScanning Electron Microscopes (SEMs) are widely renowned for their ability to analyze the surface structures of microscopic objects, offering the capability to capture highly detailed, yet only grayscale, images. To create more expressive and realistic illustrations, these images are typically manually colorized by an artist with the support of image editing software. This task becomes highly laborious when multiple images of a scanned object require colorization. We propose facilitating this process by using the underlying 3D structure of the microscopic scene to propagate the color information to all the captured images, from as little as one colorized view. We explore several scene representation techniques and achieve high-quality colorized novel view synthesis of a SEM scene. In contrast to prior work, there is no manual intervention or labelling involved in obtaining the 3D representation. This enables an artist to color a single or few views of a sequence and automatically retrieve a fully colored scene or video. Project page: https://ronly2460.github.io/ArCSEM
October 2024. https://arxiv.org/abs/2410.21310
647 3D-Adapter: Geometry-Consistent Multi-View Diffusion for High-Quality 3D Generation Hansheng Chen,Bokui Shen,Yulin Liu,Ruoxi Shi,Linqi Zhou,Connor Z. Lin,Jiayuan Gu,Hao Su,Gordon Wetzstein,Leonidas Guibas
AbstractMulti-view image diffusion models have significantly advanced open-domain 3D object generation. However, most existing models rely on 2D network architectures that lack inherent 3D biases, resulting in compromised geometric consistency. To address this challenge, we introduce 3D-Adapter, a plug-in module designed to infuse 3D geometry awareness into pretrained image diffusion models. Central to our approach is the idea of 3D feedback augmentation: for each denoising step in the sampling loop, 3D-Adapter decodes intermediate multi-view features into a coherent 3D representation, then re-encodes the rendered RGBD views to augment the pretrained base model through feature addition. We study two variants of 3D-Adapter: a fast feed-forward version based on Gaussian splatting and a versatile training-free version utilizing neural fields and meshes. Our extensive experiments demonstrate that 3D-Adapter not only greatly enhances the geometry quality of text-to-multi-view models such as Instant3D and Zero123++, but also enables high-quality 3D generation using the plain text-to-image Stable Diffusion. Furthermore, we showcase the broad application potential of 3D-Adapter by presenting high quality results in text-to-3D, image-to-3D, text-to-texture, and text-to-avatar tasks.
October 2024. https://arxiv.org/abs/2410.18974
646 Sort-free Gaussian Splatting via Weighted Sum Rendering Qiqi Hou,Randall Rauwendaal,Zifeng Li,Hoang Le,Farzad Farhadzadeh,Fatih Porikli,Alexei Bourd,Amir Said
AbstractRecently, 3D Gaussian Splatting (3DGS) has emerged as a significant advancement in 3D scene reconstruction, attracting considerable attention due to its ability to recover high-fidelity details while maintaining low complexity. Despite the promising results achieved by 3DGS, its rendering performance is constrained by its dependence on costly non-commutative alpha-blending operations. These operations mandate complex view dependent sorting operations that introduce computational overhead, especially on the resource-constrained platforms such as mobile phones. In this paper, we propose Weighted Sum Rendering, which approximates alpha blending with weighted sums, thereby removing the need for sorting. This simplifies implementation, delivers superior performance, and eliminates the "popping" artifacts caused by sorting. Experimental results show that optimizing a generalized Gaussian splatting formulation to the new differentiable rendering yields competitive image quality. The method was implemented and tested in a mobile device GPU, achieving on average $1.23\times$ faster rendering.
October 2024. https://arxiv.org/abs/2410.18931
645 Dynamic 3D Gaussian Tracking for Graph-Based Neural Dynamics Modeling Mingtong Zhang,Kaifeng Zhang,Yunzhu Li
AbstractVideos of robots interacting with objects encode rich information about the objects' dynamics. However, existing video prediction approaches typically do not explicitly account for the 3D information from videos, such as robot actions and objects' 3D states, limiting their use in real-world robotic applications. In this work, we introduce a framework to learn object dynamics directly from multi-view RGB videos by explicitly considering the robot's action trajectories and their effects on scene dynamics. We utilize the 3D Gaussian representation of 3D Gaussian Splatting (3DGS) to train a particle-based dynamics model using Graph Neural Networks. This model operates on sparse control particles downsampled from the densely tracked 3D Gaussian reconstructions. By learning the neural dynamics model on offline robot interaction data, our method can predict object motions under varying initial configurations and unseen robot actions. The 3D transformations of Gaussians can be interpolated from the motions of control particles, enabling the rendering of predicted future object states and achieving action-conditioned video prediction. The dynamics model can also be applied to model-based planning frameworks for object manipulation tasks. We conduct experiments on various kinds of deformable materials, including ropes, clothes, and stuffed animals, demonstrating our framework's ability to model complex shapes and dynamics. Our project page is available at https://gs-dynamics.github.io.
October 2024. https://arxiv.org/abs/2410.18912
644 DN-4DGS: Denoised Deformable Network with Temporal-Spatial Aggregation for Dynamic Scene Rendering Jiahao Lu,Jiacheng Deng,Ruijie Zhu,Yanzhe Liang,Wenfei Yang,Tianzhu Zhang,Xu Zhou
AbstractDynamic scenes rendering is an intriguing yet challenging problem. Although current methods based on NeRF have achieved satisfactory performance, they still can not reach real-time levels. Recently, 3D Gaussian Splatting (3DGS) has garnered researchers attention due to their outstanding rendering quality and real-time speed. Therefore, a new paradigm has been proposed: defining a canonical 3D gaussians and deforming it to individual frames in deformable fields. However, since the coordinates of canonical 3D gaussians are filled with noise, which can transfer noise into the deformable fields, and there is currently no method that adequately considers the aggregation of 4D information. Therefore, we propose Denoised Deformable Network with Temporal-Spatial Aggregation for Dynamic Scene Rendering (DN-4DGS). Specifically, a Noise Suppression Strategy is introduced to change the distribution of the coordinates of the canonical 3D gaussians and suppress noise. Additionally, a Decoupled Temporal-Spatial Aggregation Module is designed to aggregate information from adjacent points and frames. Extensive experiments on various real-world datasets demonstrate that our method achieves state-of-the-art rendering quality under a real-time level.
October 2024. https://arxiv.org/abs/2410.13607
643 VR-Splatting: Foveated Radiance Field Rendering via 3D Gaussian Splatting and Neural Points Linus Franke,Laura Fink,Marc Stamminger
AbstractRecent advances in novel view synthesis (NVS), particularly neural radiance fields (NeRF) and Gaussian splatting (3DGS), have demonstrated impressive results in photorealistic scene rendering. These techniques hold great potential for applications in virtual tourism and teleportation, where immersive realism is crucial. However, the high-performance demands of virtual reality (VR) systems present challenges in directly utilizing even such fast-to-render scene representations like 3DGS due to latency and computational constraints. In this paper, we propose foveated rendering as a promising solution to these obstacles. We analyze state-of-the-art NVS methods with respect to their rendering performance and compatibility with the human visual system. Our approach introduces a novel foveated rendering approach for Virtual Reality, that leverages the sharp, detailed output of neural point rendering for the foveal region, fused with a smooth rendering of 3DGS for the peripheral vision. Our evaluation confirms that perceived sharpness and detail-richness are increased by our approach compared to a standard VR-ready 3DGS configuration. Our system meets the necessary performance requirements for real-time VR interactions, ultimately enhancing the user's immersive experience. Project page: https://lfranke.github.io/vr_splatting
October 2024. https://arxiv.org/abs/2410.17932
642 PLGS: Robust Panoptic Lifting with 3D Gaussian Splatting Yu Wang,Xiaobao Wei,Ming Lu,Guoliang Kang
AbstractPrevious methods utilize the Neural Radiance Field (NeRF) for panoptic lifting, while their training and rendering speed are unsatisfactory. In contrast, 3D Gaussian Splatting (3DGS) has emerged as a prominent technique due to its rapid training and rendering speed. However, unlike NeRF, the conventional 3DGS may not satisfy the basic smoothness assumption as it does not rely on any parameterized structures to render (e.g., MLPs). Consequently, the conventional 3DGS is, in nature, more susceptible to noisy 2D mask supervision. In this paper, we propose a new method called PLGS that enables 3DGS to generate consistent panoptic segmentation masks from noisy 2D segmentation masks while maintaining superior efficiency compared to NeRF-based methods. Specifically, we build a panoptic-aware structured 3D Gaussian model to introduce smoothness and design effective noise reduction strategies. For the semantic field, instead of initialization with structure from motion, we construct reliable semantic anchor points to initialize the 3D Gaussians. We then use these anchor points as smooth regularization during training. Additionally, we present a self-training approach using pseudo labels generated by merging the rendered masks with the noisy masks to enhance the robustness of PLGS. For the instance field, we project the 2D instance masks into 3D space and match them with oriented bounding boxes to generate cross-view consistent instance masks for supervision. Experiments on various benchmarks demonstrate that our method outperforms previous state-of-the-art methods in terms of both segmentation quality and speed.
October 2024. https://arxiv.org/abs/2410.17505
641 EF-3DGS: Event-Aided Free-Trajectory 3D Gaussian Splatting Bohao Liao,Wei Zhai,Zengyu Wan,Tianzhu Zhang,Yang Cao,Zheng-Jun Zha
AbstractScene reconstruction from casually captured videos has wide applications in real-world scenarios. With recent advancements in differentiable rendering techniques, several methods have attempted to simultaneously optimize scene representations (NeRF or 3DGS) and camera poses. Despite recent progress, existing methods relying on traditional camera input tend to fail in high-speed (or equivalently low-frame-rate) scenarios. Event cameras, inspired by biological vision, record pixel-wise intensity changes asynchronously with high temporal resolution, providing valuable scene and motion information in blind inter-frame intervals. In this paper, we introduce the event camera to aid scene construction from a casually captured video for the first time, and propose Event-Aided Free-Trajectory 3DGS, called EF-3DGS, which seamlessly integrates the advantages of event cameras into 3DGS through three key components. First, we leverage the Event Generation Model (EGM) to fuse events and frames, supervising the rendered views observed by the event stream. Second, we adopt the Contrast Maximization (CMax) framework in a piece-wise manner to extract motion information by maximizing the contrast of the Image of Warped Events (IWE), thereby calibrating the estimated poses. Besides, based on the Linear Event Generation Model (LEGM), the brightness information encoded in the IWE is also utilized to constrain the 3DGS in the gradient domain. Third, to mitigate the absence of color information of events, we introduce photometric bundle adjustment (PBA) to ensure view consistency across events and frames. We evaluate our method on the public Tanks and Temples benchmark and a newly collected real-world dataset, RealEv-DAVIS. Our project page is https://lbh666.github.io/ef-3dgs/.
October 2024. https://arxiv.org/abs/2410.15392
640 SpectroMotion: Dynamic 3D Reconstruction of Specular Scenes Cheng-De Fan,Chen-Wei Chang,Yi-Ruei Liu,Jie-Ying Lee,Jiun-Long Huang,Yu-Chee Tseng,Yu-Lun Liu
AbstractWe present SpectroMotion, a novel approach that combines 3D Gaussian Splatting (3DGS) with physically-based rendering (PBR) and deformation fields to reconstruct dynamic specular scenes. Previous methods extending 3DGS to model dynamic scenes have struggled to accurately represent specular surfaces. Our method addresses this limitation by introducing a residual correction technique for accurate surface normal computation during deformation, complemented by a deformable environment map that adapts to time-varying lighting conditions. We implement a coarse-to-fine training strategy that significantly enhances both scene geometry and specular color prediction. We demonstrate that our model outperforms prior methods for view synthesis of scenes containing dynamic specular objects and that it is the only existing 3DGS method capable of synthesizing photorealistic real-world dynamic specular scenes, outperforming state-of-the-art methods in rendering complex, dynamic, and specular scenes.
October 2024. https://arxiv.org/abs/2410.17249
639 E-3DGS: Gaussian Splatting with Exposure and Motion Events Xiaoting Yin,Hao Shi,Yuhan Bao,Zhenshan Bing,Yiyi Liao,Kailun Yang,Kaiwei Wang
AbstractEstimating Neural Radiance Fields (NeRFs) from images captured under optimal conditions has been extensively explored in the vision community. However, robotic applications often face challenges such as motion blur, insufficient illumination, and high computational overhead, which adversely affect downstream tasks like navigation, inspection, and scene visualization. To address these challenges, we propose E-3DGS, a novel event-based approach that partitions events into motion (from camera or object movement) and exposure (from camera exposure), using the former to handle fast-motion scenes and using the latter to reconstruct grayscale images for high-quality training and optimization of event-based 3D Gaussian Splatting (3DGS). We introduce a novel integration of 3DGS with exposure events for high-quality reconstruction of explicit scene representations. Our versatile framework can operate on motion events alone for 3D reconstruction, enhance quality using exposure events, or adopt a hybrid mode that balances quality and effectiveness by optimizing with initial exposure events followed by high-speed motion events. We also introduce EME-3D, a real-world 3D dataset with exposure events, motion events, camera calibration parameters, and sparse point clouds. Our method is faster and delivers better reconstruction quality than event-based NeRF while being more cost-effective than NeRF methods that combine event and RGB data by using a single event sensor. By combining motion and exposure events, E-3DGS sets a new benchmark for event-based 3D reconstruction with robust performance in challenging conditions and lower hardware demands. The source code and dataset will be available at https://github.com/MasterHow/E-3DGS.
October 2024. https://arxiv.org/abs/2410.16995
638 Multi-Layer Gaussian Splatting for Immersive Anatomy Visualization Constantin Kleinbeck,Hannah Schieber,Klaus Engel,Ralf Gutjahr,Daniel Roth
AbstractIn medical image visualization, path tracing of volumetric medical data like CT scans produces lifelike three-dimensional visualizations. Immersive VR displays can further enhance the understanding of complex anatomies. Going beyond the diagnostic quality of traditional 2D slices, they enable interactive 3D evaluation of anatomies, supporting medical education and planning. Rendering high-quality visualizations in real-time, however, is computationally intensive and impractical for compute-constrained devices like mobile headsets. We propose a novel approach utilizing GS to create an efficient but static intermediate representation of CT scans. We introduce a layered GS representation, incrementally including different anatomical structures while minimizing overlap and extending the GS training to remove inactive Gaussians. We further compress the created model with clustering across layers. Our approach achieves interactive frame rates while preserving anatomical structures, with quality adjustable to the target hardware. Compared to standard GS, our representation retains some of the explorative qualities initially enabled by immersive path tracing. Selective activation and clipping of layers are possible at rendering time, adding a degree of interactivity to otherwise static GS models. This could enable scenarios where high computational demands would otherwise prohibit using path-traced medical volumes.
October 2024. https://arxiv.org/abs/2410.16978
637 Fully Explicit Dynamic Gaussian Splatting Junoh Lee,Chang-Yeon Won,Hyunjun Jung,Inhwan Bae,Hae-Gon Jeon
Abstract3D Gaussian Splatting has shown fast and high-quality rendering results in static scenes by leveraging dense 3D prior and explicit representations. Unfortunately, the benefits of the prior and representation do not involve novel view synthesis for dynamic motions. Ironically, this is because the main barrier is the reliance on them, which requires increasing training and rendering times to account for dynamic motions. In this paper, we design a Explicit 4D Gaussian Splatting(Ex4DGS). Our key idea is to firstly separate static and dynamic Gaussians during training, and to explicitly sample positions and rotations of the dynamic Gaussians at sparse timestamps. The sampled positions and rotations are then interpolated to represent both spatially and temporally continuous motions of objects in dynamic scenes as well as reducing computational cost. Additionally, we introduce a progressive training scheme and a point-backtracking technique that improves Ex4DGS's convergence. We initially train Ex4DGS using short timestamps and progressively extend timestamps, which makes it work well with a few point clouds. The point-backtracking is used to quantify the cumulative error of each Gaussian over time, enabling the detection and removal of erroneous Gaussians in dynamic scenes. Comprehensive experiments on various scenes demonstrate the state-of-the-art rendering quality from our method, achieving fast rendering of 62 fps on a single 2080Ti GPU.
October 2024. https://arxiv.org/abs/2410.15629
636 3DGS-Enhancer: Enhancing Unbounded 3D Gaussian Splatting with View-consistent 2D Diffusion Priors Xi Liu,Chaoyi Zhou,Siyu Huang
AbstractNovel-view synthesis aims to generate novel views of a scene from multiple input images or videos, and recent advancements like 3D Gaussian splatting (3DGS) have achieved notable success in producing photorealistic renderings with efficient pipelines. However, generating high-quality novel views under challenging settings, such as sparse input views, remains difficult due to insufficient information in under-sampled areas, often resulting in noticeable artifacts. This paper presents 3DGS-Enhancer, a novel pipeline for enhancing the representation quality of 3DGS representations. We leverage 2D video diffusion priors to address the challenging 3D view consistency problem, reformulating it as achieving temporal consistency within a video generation process. 3DGS-Enhancer restores view-consistent latent features of rendered novel views and integrates them with the input views through a spatial-temporal decoder. The enhanced views are then used to fine-tune the initial 3DGS model, significantly improving its rendering performance. Extensive experiments on large-scale datasets of unbounded scenes demonstrate that 3DGS-Enhancer yields superior reconstruction performance and high-fidelity rendering results compared to state-of-the-art methods. The project webpage is https://xiliu8006.github.io/3DGS-Enhancer-project .
October 2024. https://arxiv.org/abs/2410.16266
635 MSGField: A Unified Scene Representation Integrating Motion, Semantics, and Geometry for Robotic Manipulation Yu Sheng,Runfeng Lin,Lidian Wang,Quecheng Qiu,YanYong Zhang,Yu Zhang,Bei Hua,Jianmin Ji
AbstractCombining accurate geometry with rich semantics has been proven to be highly effective for language-guided robotic manipulation. Existing methods for dynamic scenes either fail to update in real-time or rely on additional depth sensors for simple scene editing, limiting their applicability in real-world. In this paper, we introduce MSGField, a representation that uses a collection of 2D Gaussians for high-quality reconstruction, further enhanced with attributes to encode semantic and motion information. Specially, we represent the motion field compactly by decomposing each primitive's motion into a combination of a limited set of motion bases. Leveraging the differentiable real-time rendering of Gaussian splatting, we can quickly optimize object motion, even for complex non-rigid motions, with image supervision from only two camera views. Additionally, we designed a pipeline that utilizes object priors to efficiently obtain well-defined semantics. In our challenging dataset, which includes flexible and extremely small objects, our method achieve a success rate of 79.2% in static and 63.3% in dynamic environments for language-guided manipulation. For specified object grasping, we achieve a success rate of 90%, on par with point cloud-based methods. Code and dataset will be released at:https://shengyu724.github.io/MSGField.github.io.
October 2024. https://arxiv.org/abs/2410.15730
634 End-to-End Rate-Distortion Optimized 3D Gaussian Representation Henan Wang,Hanxin Zhu,Tianyu He,Runsen Feng,Jiajun Deng,Jiang Bian,Zhibo Chen
Abstract3D Gaussian Splatting (3DGS) has become an emerging technique with remarkable potential in 3D representation and image rendering. However, the substantial storage overhead of 3DGS significantly impedes its practical applications. In this work, we formulate the compact 3D Gaussian learning as an end-to-end Rate-Distortion Optimization (RDO) problem and propose RDO-Gaussian that can achieve flexible and continuous rate control. RDO-Gaussian addresses two main issues that exist in current schemes: 1) Different from prior endeavors that minimize the rate under the fixed distortion, we introduce dynamic pruning and entropy-constrained vector quantization (ECVQ) that optimize the rate and distortion at the same time. 2) Previous works treat the colors of each Gaussian equally, while we model the colors of different regions and materials with learnable numbers of parameters. We verify our method on both real and synthetic scenes, showcasing that RDO-Gaussian greatly reduces the size of 3D Gaussian over 40x, and surpasses existing methods in rate-distortion performance.
June 2024. https://arxiv.org/abs/2406.01597
633 StreetSurfGS: Scalable Urban Street Surface Reconstruction with Planar-based Gaussian Splatting Xiao Cui,Weicai Ye,Yifan Wang,Guofeng Zhang,Wengang Zhou,Houqiang Li
AbstractReconstructing urban street scenes is crucial due to its vital role in applications such as autonomous driving and urban planning. These scenes are characterized by long and narrow camera trajectories, occlusion, complex object relationships, and data sparsity across multiple scales. Despite recent advancements, existing surface reconstruction methods, which are primarily designed for object-centric scenarios, struggle to adapt effectively to the unique characteristics of street scenes. To address this challenge, we introduce StreetSurfGS, the first method to employ Gaussian Splatting specifically tailored for scalable urban street scene surface reconstruction. StreetSurfGS utilizes a planar-based octree representation and segmented training to reduce memory costs, accommodate unique camera characteristics, and ensure scalability. Additionally, to mitigate depth inaccuracies caused by object overlap, we propose a guided smoothing strategy within regularization to eliminate inaccurate boundary points and outliers. Furthermore, to address sparse views and multi-scale challenges, we use a dual-step matching strategy that leverages adjacent and long-term information. Extensive experiments validate the efficacy of StreetSurfGS in both novel view synthesis and surface reconstruction.
October 2024. https://arxiv.org/abs/2410.04354
632 GS-LIVM: Real-Time Photo-Realistic LiDAR-Inertial-Visual Mapping with Gaussian Splatting Yusen Xie,Zhenmin Huang,Jin Wu,Jun Ma
AbstractIn this paper, we introduce GS-LIVM, a real-time photo-realistic LiDAR-Inertial-Visual mapping framework with Gaussian Splatting tailored for outdoor scenes. Compared to existing methods based on Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), our approach enables real-time photo-realistic mapping while ensuring high-quality image rendering in large-scale unbounded outdoor environments. In this work, Gaussian Process Regression (GPR) is employed to mitigate the issues resulting from sparse and unevenly distributed LiDAR observations. The voxel-based 3D Gaussians map representation facilitates real-time dense mapping in large outdoor environments with acceleration governed by custom CUDA kernels. Moreover, the overall framework is designed in a covariance-centered manner, where the estimated covariance is used to initialize the scale and rotation of 3D Gaussians, as well as update the parameters of the GPR. We evaluate our algorithm on several outdoor datasets, and the results demonstrate that our method achieves state-of-the-art performance in terms of mapping efficiency and rendering quality. The source code is available on GitHub.
October 2024. https://arxiv.org/abs/2410.17084
631 IncEventGS: Pose-Free Gaussian Splatting from a Single Event Camera Jian Huang,Chengrui Dong,Peidong Liu
AbstractImplicit neural representation and explicit 3D Gaussian Splatting (3D-GS) for novel view synthesis have achieved remarkable progress with frame-based camera (e.g. RGB and RGB-D cameras) recently. Compared to frame-based camera, a novel type of bio-inspired visual sensor, i.e. event camera, has demonstrated advantages in high temporal resolution, high dynamic range, low power consumption and low latency. Due to its unique asynchronous and irregular data capturing process, limited work has been proposed to apply neural representation or 3D Gaussian splatting for an event camera. In this work, we present IncEventGS, an incremental 3D Gaussian Splatting reconstruction algorithm with a single event camera. To recover the 3D scene representation incrementally, we exploit the tracking and mapping paradigm of conventional SLAM pipelines for IncEventGS. Given the incoming event stream, the tracker firstly estimates an initial camera motion based on prior reconstructed 3D-GS scene representation. The mapper then jointly refines both the 3D scene representation and camera motion based on the previously estimated motion trajectory from the tracker. The experimental results demonstrate that IncEventGS delivers superior performance compared to prior NeRF-based methods and other related baselines, even we do not have the ground-truth camera poses. Furthermore, our method can also deliver better performance compared to state-of-the-art event visual odometry methods in terms of camera motion estimation. Code is publicly available at: https://github.com/wu-cvgl/IncEventGS.
October 2024. https://arxiv.org/abs/2410.08107
630 MicroDreamer: Efficient 3D Generation in $\sim$20 Seconds by Score-based Iterative Reconstruction Luxi Chen,Zhengyi Wang,Zihan Zhou,Tingting Gao,Hang Su,Jun Zhu,Chongxuan Li
AbstractOptimization-based approaches, such as score distillation sampling (SDS), show promise in zero-shot 3D generation but suffer from low efficiency, primarily due to the high number of function evaluations (NFEs) required for each sample and the limitation of optimization confined to latent space. This paper introduces score-based iterative reconstruction (SIR), an efficient and general algorithm mimicking a differentiable 3D reconstruction process to reduce the NFEs and enable optimization in pixel space. Given a single set of images sampled from a multi-view score-based diffusion model, SIR repeatedly optimizes 3D parameters, unlike the single-step optimization in SDS. With other improvements in training, we present an efficient approach called MicroDreamer that generally applies to various 3D representations and 3D generation tasks. In particular, MicroDreamer is 5-20 times faster than SDS in generating neural radiance field while retaining a comparable performance and takes about 20 seconds to create meshes from 3D Gaussian splatting on a single A100 GPU, halving the time of the fastest optimization-based baseline DreamGaussian with significantly superior performance compared to the measurement standard deviation. Our code is available at https://github.com/ML-GSAI/MicroDreamer.
April 2024. https://arxiv.org/abs/2404.19525
629 Neural Signed Distance Function Inference through Splatting 3D Gaussians Pulled on Zero-Level Set Wenyuan Zhang,Yu-Shen Liu,Zhizhong Han
AbstractIt is vital to infer a signed distance function (SDF) in multi-view based surface reconstruction. 3D Gaussian splatting (3DGS) provides a novel perspective for volume rendering, and shows advantages in rendering efficiency and quality. Although 3DGS provides a promising neural rendering option, it is still hard to infer SDFs for surface reconstruction with 3DGS due to the discreteness, the sparseness, and the off-surface drift of 3D Gaussians. To resolve these issues, we propose a method that seamlessly merge 3DGS with the learning of neural SDFs. Our key idea is to more effectively constrain the SDF inference with the multi-view consistency. To this end, we dynamically align 3D Gaussians on the zero-level set of the neural SDF using neural pulling, and then render the aligned 3D Gaussians through the differentiable rasterization. Meanwhile, we update the neural SDF by pulling neighboring space to the pulled 3D Gaussians, which progressively refine the signed distance field near the surface. With both differentiable pulling and splatting, we jointly optimize 3D Gaussians and the neural SDF with both RGB and geometry constraints, which recovers more accurate, smooth, and complete surfaces with more geometry details. Our numerical and visual comparisons show our superiority over the state-of-the-art results on the widely used benchmarks.
October 2024. https://arxiv.org/abs/2410.14189
628 DaRePlane: Direction-aware Representations for Dynamic Scene Reconstruction Ange Lou,Benjamin Planche,Zhongpai Gao,Yamin Li,Tianyu Luan,Hao Ding,Meng Zheng,Terrence Chen,Ziyan Wu,Jack Noble
AbstractNumerous recent approaches to modeling and re-rendering dynamic scenes leverage plane-based explicit representations, addressing slow training times associated with models like neural radiance fields (NeRF) and Gaussian splatting (GS). However, merely decomposing 4D dynamic scenes into multiple 2D plane-based representations is insufficient for high-fidelity re-rendering of scenes with complex motions. In response, we present DaRePlane, a novel direction-aware representation approach that captures scene dynamics from six different directions. This learned representation undergoes an inverse dual-tree complex wavelet transformation (DTCWT) to recover plane-based information. Within NeRF pipelines, DaRePlane computes features for each space-time point by fusing vectors from these recovered planes, then passed to a tiny MLP for color regression. When applied to Gaussian splatting, DaRePlane computes the features of Gaussian points, followed by a tiny multi-head MLP for spatial-time deformation prediction. Notably, to address redundancy introduced by the six real and six imaginary direction-aware wavelet coefficients, we introduce a trainable masking approach, mitigating storage issues without significant performance decline. To demonstrate the generality and efficiency of DaRePlane, we test it on both regular and surgical dynamic scenes, for both NeRF and GS systems. Extensive experiments show that DaRePlane yields state-of-the-art performance in novel view synthesis for various complex dynamic scenes.
October 2024. https://arxiv.org/abs/2410.14169
627 Differentiable Robot Rendering Ruoshi Liu,Alper Canberk,Shuran Song,Carl Vondrick
AbstractVision foundation models trained on massive amounts of visual data have shown unprecedented reasoning and planning skills in open-world settings. A key challenge in applying them to robotic tasks is the modality gap between visual data and action data. We introduce differentiable robot rendering, a method allowing the visual appearance of a robot body to be directly differentiable with respect to its control parameters. Our model integrates a kinematics-aware deformable model and Gaussians Splatting and is compatible with any robot form factors and degrees of freedom. We demonstrate its capability and usage in applications including reconstruction of robot poses from images and controlling robots through vision language models. Quantitative and qualitative results show that our differentiable rendering model provides effective gradients for robotic control directly from pixels, setting the foundation for the future applications of vision foundation models in robotics.
October 2024. https://arxiv.org/abs/2410.13851
626 MEGA: Memory-Efficient 4D Gaussian Splatting for Dynamic Scenes Xinjie Zhang,Zhening Liu,Yifan Zhang,Xingtong Ge,Dailan He,Tongda Xu,Yan Wang,Zehong Lin,Shuicheng Yan,Jun Zhang
Abstract4D Gaussian Splatting (4DGS) has recently emerged as a promising technique for capturing complex dynamic 3D scenes with high fidelity. It utilizes a 4D Gaussian representation and a GPU-friendly rasterizer, enabling rapid rendering speeds. Despite its advantages, 4DGS faces significant challenges, notably the requirement of millions of 4D Gaussians, each with extensive associated attributes, leading to substantial memory and storage cost. This paper introduces a memory-efficient framework for 4DGS. We streamline the color attribute by decomposing it into a per-Gaussian direct color component with only 3 parameters and a shared lightweight alternating current color predictor. This approach eliminates the need for spherical harmonics coefficients, which typically involve up to 144 parameters in classic 4DGS, thereby creating a memory-efficient 4D Gaussian representation. Furthermore, we introduce an entropy-constrained Gaussian deformation technique that uses a deformation field to expand the action range of each Gaussian and integrates an opacity-based entropy loss to limit the number of Gaussians, thus forcing our model to use as few Gaussians as possible to fit a dynamic scene well. With simple half-precision storage and zip compression, our framework achieves a storage reduction by approximately 190$\times$ and 125$\times$ on the Technicolor and Neural 3D Video datasets, respectively, compared to the original 4DGS. Meanwhile, it maintains comparable rendering speeds and scene representation quality, setting a new standard in the field.
October 2024. https://arxiv.org/abs/2410.13613
625 GlossyGS: Inverse Rendering of Glossy Objects with 3D Gaussian Splatting Shuichang Lai,Letian Huang,Jie Guo,Kai Cheng,Bowen Pan,Xiaoxiao Long,Jiangjing Lyu,Chengfei Lv,Yanwen Guo
AbstractReconstructing objects from posed images is a crucial and complex task in computer graphics and computer vision. While NeRF-based neural reconstruction methods have exhibited impressive reconstruction ability, they tend to be time-comsuming. Recent strategies have adopted 3D Gaussian Splatting (3D-GS) for inverse rendering, which have led to quick and effective outcomes. However, these techniques generally have difficulty in producing believable geometries and materials for glossy objects, a challenge that stems from the inherent ambiguities of inverse rendering. To address this, we introduce GlossyGS, an innovative 3D-GS-based inverse rendering framework that aims to precisely reconstruct the geometry and materials of glossy objects by integrating material priors. The key idea is the use of micro-facet geometry segmentation prior, which helps to reduce the intrinsic ambiguities and improve the decomposition of geometries and materials. Additionally, we introduce a normal map prefiltering strategy to more accurately simulate the normal distribution of reflective surfaces. These strategies are integrated into a hybrid geometry and material representation that employs both explicit and implicit methods to depict glossy objects. We demonstrate through quantitative analysis and qualitative visualization that the proposed method is effective to reconstruct high-fidelity geometries and materials of glossy objects, and performs favorably against state-of-the-arts.
October 2024. https://arxiv.org/abs/2410.13349
624 Octree-GS: Towards Consistent Real-time Rendering with LOD-Structured 3D Gaussians Kerui Ren,Lihan Jiang,Tao Lu,Mulin Yu,Linning Xu,Zhangkai Ni,Bo Dai
AbstractThe recent 3D Gaussian splatting (3D-GS) has shown remarkable rendering fidelity and efficiency compared to NeRF-based neural scene representations. While demonstrating the potential for real-time rendering, 3D-GS encounters rendering bottlenecks in large scenes with complex details due to an excessive number of Gaussian primitives located within the viewing frustum. This limitation is particularly noticeable in zoom-out views and can lead to inconsistent rendering speeds in scenes with varying details. Moreover, it often struggles to capture the corresponding level of details at different scales with its heuristic density control operation. Inspired by the Level-of-Detail (LOD) techniques, we introduce Octree-GS, featuring an LOD-structured 3D Gaussian approach supporting level-of-detail decomposition for scene representation that contributes to the final rendering results. Our model dynamically selects the appropriate level from the set of multi-resolution anchor points, ensuring consistent rendering performance with adaptive LOD adjustments while maintaining high-fidelity rendering results.
March 2024. https://arxiv.org/abs/2403.17898
623 Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks Alex Quach,Makram Chahine,Alexander Amini,Ramin Hasani,Daniela Rus
AbstractSimulators are powerful tools for autonomous robot learning as they offer scalable data generation, flexible design, and optimization of trajectories. However, transferring behavior learned from simulation data into the real world proves to be difficult, usually mitigated with compute-heavy domain randomization methods or further model fine-tuning. We present a method to improve generalization and robustness to distribution shifts in sim-to-real visual quadrotor navigation tasks. To this end, we first build a simulator by integrating Gaussian Splatting with quadrotor flight dynamics, and then, train robust navigation policies using Liquid neural networks. In this way, we obtain a full-stack imitation learning protocol that combines advances in 3D Gaussian splatting radiance field rendering, crafty programming of expert demonstration training data, and the task understanding capabilities of Liquid networks. Through a series of quantitative flight tests, we demonstrate the robust transfer of navigation skills learned in a single simulation scene directly to the real world. We further show the ability to maintain performance beyond the training environment under drastic distribution and physical environment changes. Our learned Liquid policies, trained on single target manoeuvres curated from a photorealistic simulated indoor flight only, generalize to multi-step hikes onboard a real hardware platform outdoors.
June 2024. https://arxiv.org/abs/2406.15149
622 Long-LRM: Long-sequence Large Reconstruction Model for Wide-coverage Gaussian Splats Chen Ziwen,Hao Tan,Kai Zhang,Sai Bi,Fujun Luan,Yicong Hong,Li Fuxin,Zexiang Xu
AbstractWe propose Long-LRM, a generalizable 3D Gaussian reconstruction model that is capable of reconstructing a large scene from a long sequence of input images. Specifically, our model can process 32 source images at 960x540 resolution within only 1.3 seconds on a single A100 80G GPU. Our architecture features a mixture of the recent Mamba2 blocks and the classical transformer blocks which allowed many more tokens to be processed than prior work, enhanced by efficient token merging and Gaussian pruning steps that balance between quality and efficiency. Unlike previous feed-forward models that are limited to processing 1~4 input images and can only reconstruct a small portion of a large scene, Long-LRM reconstructs the entire scene in a single feed-forward step. On large-scale scene datasets such as DL3DV-140 and Tanks and Temples, our method achieves performance comparable to optimization-based approaches while being two orders of magnitude more efficient. Project page: https://arthurhero.github.io/projects/llrm
October 2024. https://arxiv.org/abs/2410.12781
621 Gaussian Primitives for Deformable Image Registration Jihe Li,Xiang Liu,Fabian Zhang,Xia Li,Xixin Cao,Ye Zhang,Joachim Buhmann
AbstractDeformable Image Registration (DIR) is essential for aligning medical images that exhibit anatomical variations, facilitating applications such as disease tracking and radiotherapy planning. While classical iterative methods and deep learning approaches have achieved success in DIR, they are often hindered by computational inefficiency or poor generalization. In this paper, we introduce GaussianDIR, a novel, case-specific optimization DIR method inspired by 3D Gaussian splatting. In general, GaussianDIR represents image deformations using a sparse set of mobile and flexible Gaussian primitives, each defined by a center position, covariance, and local rigid transformation. This compact and explicit representation reduces noise and computational overhead while improving interpretability. Furthermore, the movement of individual voxel is derived via blending the local rigid transformation of the neighboring Gaussian primitives. By this, GaussianDIR captures both global smoothness and local rigidity as well as reduces the computational burden. To address varying levels of deformation complexity, GaussianDIR also integrates an adaptive density control mechanism that dynamically adjusts the density of Gaussian primitives. Additionally, we employ multi-scale Gaussian primitives to capture both coarse and fine deformations, reducing optimization to local minima. Experimental results on brain MRI, lung CT, and cardiac MRI datasets demonstrate that GaussianDIR outperforms existing DIR methods in both accuracy and efficiency, highlighting its potential for clinical applications. Finally, as a training-free approach, it challenges the stereotype that iterative methods are inherently slow and transcend the limitations of poor generalization.
June 2024. https://arxiv.org/abs/2406.03394
620 Mini-Splatting: Representing Scenes with a Constrained Number of Gaussians Guangchi Fang,Bing Wang
AbstractIn this study, we explore the challenge of efficiently representing scenes with a constrained number of Gaussians. Our analysis shifts from traditional graphics and 2D computer vision to the perspective of point clouds, highlighting the inefficient spatial distribution of Gaussian representation as a key limitation in model performance. To address this, we introduce strategies for densification including blur split and depth reinitialization, and simplification through intersection preserving and sampling. These techniques reorganize the spatial positions of the Gaussians, resulting in significant improvements across various datasets and benchmarks in terms of rendering quality, resource consumption, and storage compression. Our Mini-Splatting integrates seamlessly with the original rasterization pipeline, providing a strong baseline for future research in Gaussian-Splatting-based works. \href{https://github.com/fatPeter/mini-splatting}{Code is available}.
March 2024. https://arxiv.org/abs/2403.14166
619 3D Gaussian Splatting in Robotics: A Survey Siting Zhu,Guangming Wang,Dezhi Kong,Hesheng Wang
AbstractDense 3D representations of the environment have been a long-term goal in the robotics field. While previous Neural Radiance Fields (NeRF) representation have been prevalent for its implicit, coordinate-based model, the recent emergence of 3D Gaussian Splatting (3DGS) has demonstrated remarkable potential in its explicit radiance field representation. By leveraging 3D Gaussian primitives for explicit scene representation and enabling differentiable rendering, 3DGS has shown significant advantages over other radiance fields in real-time rendering and photo-realistic performance, which is beneficial for robotic applications. In this survey, we provide a comprehensive understanding of 3DGS in the field of robotics. We divide our discussion of the related works into two main categories: the application of 3DGS and the advancements in 3DGS techniques. In the application section, we explore how 3DGS has been utilized in various robotics tasks from scene understanding and interaction perspectives. The advance of 3DGS section focuses on the improvements of 3DGS own properties in its adaptability and efficiency, aiming to enhance its performance in robotics. We then summarize the most commonly used datasets and evaluation metrics in robotics. Finally, we identify the challenges and limitations of current 3DGS methods and discuss the future development of 3DGS in robotics.
October 2024. https://arxiv.org/abs/2410.12262
618 SplatPose+: Real-time Image-Based Pose-Agnostic 3D Anomaly Detection Yizhe Liu,Yan Song Hu,Yuhao Chen,John Zelek
AbstractImage-based Pose-Agnostic 3D Anomaly Detection is an important task that has emerged in industrial quality control. This task seeks to find anomalies from query images of a tested object given a set of reference images of an anomaly-free object. The challenge is that the query views (a.k.a poses) are unknown and can be different from the reference views. Currently, new methods such as OmniposeAD and SplatPose have emerged to bridge the gap by synthesizing pseudo reference images at the query views for pixel-to-pixel comparison. However, none of these methods can infer in real-time, which is critical in industrial quality control for massive production. For this reason, we propose SplatPose+, which employs a hybrid representation consisting of a Structure from Motion (SfM) model for localization and a 3D Gaussian Splatting (3DGS) model for Novel View Synthesis. Although our proposed pipeline requires the computation of an additional SfM model, it offers real-time inference speeds and faster training compared to SplatPose. Quality-wise, we achieved a new SOTA on the Pose-agnostic Anomaly Detection benchmark with the Multi-Pose Anomaly Detection (MAD-SIM) dataset.
October 2024. https://arxiv.org/abs/2410.12080
617 Dual-frame Fluid Motion Estimation with Test-time Optimization and Zero-divergence Loss Yifei Zhang,Huan-ang Gao,Zhou Jiang,Hao Zhao
Abstract3D particle tracking velocimetry (PTV) is a key technique for analyzing turbulent flow, one of the most challenging computational problems of our century. At the core of 3D PTV is the dual-frame fluid motion estimation algorithm, which tracks particles across two consecutive frames. Recently, deep learning-based methods have achieved impressive accuracy in dual-frame fluid motion estimation; however, they heavily depend on large volumes of labeled data. In this paper, we introduce a new method that is completely self-supervised and notably outperforms its fully-supervised counterparts while requiring only 1% of the training samples (without labels) used by previous methods. Our method features a novel zero-divergence loss that is specific to the domain of turbulent flow. Inspired by the success of splat operation in high-dimensional filtering and random fields, we propose a splat-based implementation for this loss which is both efficient and effective. The self-supervised nature of our method naturally supports test-time optimization, leading to the development of a tailored Dynamic Velocimetry Enhancer (DVE) module. We demonstrate that strong cross-domain robustness is achieved through test-time optimization on unseen leave-one-out synthetic domains and real physical/biological domains. Code, data and models are available at https://github.com/Forrest-110/FluidMotionNet.
October 2024. https://arxiv.org/abs/2410.11934
616 LoGS: Visual Localization via Gaussian Splatting with Fewer Training Images Yuzhou Cheng,Jianhao Jiao,Yue Wang,Dimitrios Kanoulas
AbstractVisual localization involves estimating a query image's 6-DoF (degrees of freedom) camera pose, which is a fundamental component in various computer vision and robotic tasks. This paper presents LoGS, a vision-based localization pipeline utilizing the 3D Gaussian Splatting (GS) technique as scene representation. This novel representation allows high-quality novel view synthesis. During the mapping phase, structure-from-motion (SfM) is applied first, followed by the generation of a GS map. During localization, the initial position is obtained through image retrieval, local feature matching coupled with a PnP solver, and then a high-precision pose is achieved through the analysis-by-synthesis manner on the GS map. Experimental results on four large-scale datasets demonstrate the proposed approach's SoTA accuracy in estimating camera poses and robustness under challenging few-shot conditions.
October 2024. https://arxiv.org/abs/2410.11505
615 4-LEGS: 4D Language Embedded Gaussian Splatting Gal Fiebelman,Tamir Cohen,Ayellet Morgenstern,Peter Hedman,Hadar Averbuch-Elor
AbstractThe emergence of neural representations has revolutionized our means for digitally viewing a wide range of 3D scenes, enabling the synthesis of photorealistic images rendered from novel views. Recently, several techniques have been proposed for connecting these low-level representations with the high-level semantics understanding embodied within the scene. These methods elevate the rich semantic understanding from 2D imagery to 3D representations, distilling high-dimensional spatial features onto 3D space. In our work, we are interested in connecting language with a dynamic modeling of the world. We show how to lift spatio-temporal features to a 4D representation based on 3D Gaussian Splatting. This enables an interactive interface where the user can spatiotemporally localize events in the video from text prompts. We demonstrate our system on public 3D video datasets of people and animals performing various actions.
October 2024. https://arxiv.org/abs/2410.10719
614 GS^3: Efficient Relighting with Triple Gaussian Splatting Zoubin Bi,Yixin Zeng,Chong Zeng,Fan Pei,Xiang Feng,Kun Zhou,Hongzhi Wu
AbstractWe present a spatial and angular Gaussian based representation and a triple splatting process, for real-time, high-quality novel lighting-and-view synthesis from multi-view point-lit input images. To describe complex appearance, we employ a Lambertian plus a mixture of angular Gaussians as an effective reflectance function for each spatial Gaussian. To generate self-shadow, we splat all spatial Gaussians towards the light source to obtain shadow values, which are further refined by a small multi-layer perceptron. To compensate for other effects like global illumination, another network is trained to compute and add a per-spatial-Gaussian RGB tuple. The effectiveness of our representation is demonstrated on 30 samples with a wide variation in geometry (from solid to fluffy) and appearance (from translucent to anisotropic), as well as using different forms of input data, including rendered images of synthetic/reconstructed objects, photographs captured with a handheld camera and a flash, or from a professional lightstage. We achieve a training time of 40-70 minutes and a rendering speed of 90 fps on a single commodity GPU. Our results compare favorably with state-of-the-art techniques in terms of quality/performance. Our code and data are publicly available at https://GSrelight.github.io/.
October 2024. https://arxiv.org/abs/2410.11419
613 MCGS: Multiview Consistency Enhancement for Sparse-View 3D Gaussian Radiance Fields Yuru Xiao,Deming Zhai,Wenbo Zhao,Kui Jiang,Junjun Jiang,Xianming Liu
AbstractRadiance fields represented by 3D Gaussians excel at synthesizing novel views, offering both high training efficiency and fast rendering. However, with sparse input views, the lack of multi-view consistency constraints results in poorly initialized point clouds and unreliable heuristics for optimization and densification, leading to suboptimal performance. Existing methods often incorporate depth priors from dense estimation networks but overlook the inherent multi-view consistency in input images. Additionally, they rely on multi-view stereo (MVS)-based initialization, which limits the efficiency of scene representation. To overcome these challenges, we propose a view synthesis framework based on 3D Gaussian Splatting, named MCGS, enabling photorealistic scene reconstruction from sparse input views. The key innovations of MCGS in enhancing multi-view consistency are as follows: i) We introduce an initialization method by leveraging a sparse matcher combined with a random filling strategy, yielding a compact yet sufficient set of initial points. This approach enhances the initial geometry prior, promoting efficient scene representation. ii) We develop a multi-view consistency-guided progressive pruning strategy to refine the Gaussian field by strengthening consistency and eliminating low-contribution Gaussians. These modular, plug-and-play strategies enhance robustness to sparse input views, accelerate rendering, and reduce memory consumption, making MCGS a practical and efficient framework for 3D Gaussian Splatting.
October 2024. https://arxiv.org/abs/2410.11394
612 Spectral-GS: Taming 3D Gaussian Splatting with Spectral Entropy Letian Huang,Jie Guo,Jialin Dan,Ruoyu Fu,Shujie Wang,Yuanqi Li,Yanwen Guo
AbstractRecently, 3D Gaussian Splatting (3D-GS) has achieved impressive results in novel view synthesis, demonstrating high fidelity and efficiency. However, it easily exhibits needle-like artifacts, especially when increasing the sampling rate. Mip-Splatting tries to remove these artifacts with a 3D smoothing filter for frequency constraints and a 2D Mip filter for approximated supersampling. Unfortunately, it tends to produce over-blurred results, and sometimes needle-like Gaussians still persist. Our spectral analysis of the covariance matrix during optimization and densification reveals that current 3D-GS lacks shape awareness, relying instead on spectral radius and view positional gradients to determine splitting. As a result, needle-like Gaussians with small positional gradients and low spectral entropy fail to split and overfit high-frequency details. Furthermore, both the filters used in 3D-GS and Mip-Splatting reduce the spectral entropy and increase the condition number during zooming in to synthesize novel view, causing view inconsistencies and more pronounced artifacts. Our Spectral-GS, based on spectral analysis, introduces 3D shape-aware splitting and 2D view-consistent filtering strategies, effectively addressing these issues, enhancing 3D-GS's capability to represent high-frequency details without noticeable artifacts, and achieving high-quality photorealistic rendering.
September 2024. https://arxiv.org/abs/2409.12771
611 Scalable Indoor Novel-View Synthesis using Drone-Captured 360 Imagery with 3D Gaussian Splatting Yuanbo Chen,Chengyu Zhang,Jason Wang,Xuefan Gao,Avideh Zakhor
AbstractScene reconstruction and novel-view synthesis for large, complex, multi-story, indoor scenes is a challenging and time-consuming task. Prior methods have utilized drones for data capture and radiance fields for scene reconstruction, both of which present certain challenges. First, in order to capture diverse viewpoints with the drone's front-facing camera, some approaches fly the drone in an unstable zig-zag fashion, which hinders drone-piloting and generates motion blur in the captured data. Secondly, most radiance field methods do not easily scale to arbitrarily large number of images. This paper proposes an efficient and scalable pipeline for indoor novel-view synthesis from drone-captured 360 videos using 3D Gaussian Splatting. 360 cameras capture a wide set of viewpoints, allowing for comprehensive scene capture under a simple straightforward drone trajectory. To scale our method to large scenes, we devise a divide-and-conquer strategy to automatically split the scene into smaller blocks that can be reconstructed individually and in parallel. We also propose a coarse-to-fine alignment strategy to seamlessly match these blocks together to compose the entire scene. Our experiments demonstrate marked improvement in both reconstruction quality, i.e. PSNR and SSIM, and computation time compared to prior approaches.
October 2024. https://arxiv.org/abs/2410.11285
610 Few-shot Novel View Synthesis using Depth Aware 3D Gaussian Splatting Raja Kumar,Vanshika Vats
Abstract3D Gaussian splatting has surpassed neural radiance field methods in novel view synthesis by achieving lower computational costs and real-time high-quality rendering. Although it produces a high-quality rendering with a lot of input views, its performance drops significantly when only a few views are available. In this work, we address this by proposing a depth-aware Gaussian splatting method for few-shot novel view synthesis. We use monocular depth prediction as a prior, along with a scale-invariant depth loss, to constrain the 3D shape under just a few input views. We also model color using lower-order spherical harmonics to avoid overfitting. Further, we observe that removing splats with lower opacity periodically, as performed in the original work, leads to a very sparse point cloud and, hence, a lower-quality rendering. To mitigate this, we retain all the splats, leading to a better reconstruction in a few view settings. Experimental results show that our method outperforms the traditional 3D Gaussian splatting methods by achieving improvements of 10.5% in peak signal-to-noise ratio, 6% in structural similarity index, and 14.1% in perceptual similarity, thereby validating the effectiveness of our approach. The code will be made available at: https://github.com/raja-kumar/depth-aware-3DGS
October 2024. https://arxiv.org/abs/2410.11080
609 4DStyleGaussian: Zero-shot 4D Style Transfer with Gaussian Splatting Wanlin Liang,Hongbin Xu,Weitao Chen,Feng Xiao,Wenxiong Kang
Abstract3D neural style transfer has gained significant attention for its potential to provide user-friendly stylization with spatial consistency. However, existing 3D style transfer methods often fall short in terms of inference efficiency, generalization ability, and struggle to handle dynamic scenes with temporal consistency. In this paper, we introduce 4DStyleGaussian, a novel 4D style transfer framework designed to achieve real-time stylization of arbitrary style references while maintaining reasonable content affinity, multi-view consistency, and temporal coherence. Our approach leverages an embedded 4D Gaussian Splatting technique, which is trained using a reversible neural network for reducing content loss in the feature distillation process. Utilizing the 4D embedded Gaussians, we predict a 4D style transformation matrix that facilitates spatially and temporally consistent style transfer with Gaussian Splatting. Experiments demonstrate that our method can achieve high-quality and zero-shot stylization for 4D scenarios with enhanced efficiency and spatial-temporal consistency.
October 2024. https://arxiv.org/abs/2410.10412
608 SceneDreamer360: Text-Driven 3D-Consistent Scene Generation with Panoramic Gaussian Splatting Wenrui Li,Fucheng Cai,Yapeng Mi,Zhe Yang,Wangmeng Zuo,Xingtao Wang,Xiaopeng Fan
AbstractText-driven 3D scene generation has seen significant advancements recently. However, most existing methods generate single-view images using generative models and then stitch them together in 3D space. This independent generation for each view often results in spatial inconsistency and implausibility in the 3D scenes. To address this challenge, we proposed a novel text-driven 3D-consistent scene generation model: SceneDreamer360. Our proposed method leverages a text-driven panoramic image generation model as a prior for 3D scene generation and employs 3D Gaussian Splatting (3DGS) to ensure consistency across multi-view panoramic images. Specifically, SceneDreamer360 enhances the fine-tuned Panfusion generator with a three-stage panoramic enhancement, enabling the generation of high-resolution, detail-rich panoramic images. During the 3D scene construction, a novel point cloud fusion initialization method is used, producing higher quality and spatially consistent point clouds. Our extensive experiments demonstrate that compared to other methods, SceneDreamer360 with its panoramic image generation and 3DGS can produce higher quality, spatially consistent, and visually appealing 3D scenes from any text prompt. Our codes are available at \url{https://github.com/liwrui/SceneDreamer360}.
August 2024. https://arxiv.org/abs/2408.13711
607 Event3DGS: Event-Based 3D Gaussian Splatting for High-Speed Robot Egomotion Tianyi Xiong,Jiayi Wu,Botao He,Cornelia Fermuller,Yiannis Aloimonos,Heng Huang,Christopher A. Metzler
AbstractBy combining differentiable rendering with explicit point-based scene representations, 3D Gaussian Splatting (3DGS) has demonstrated breakthrough 3D reconstruction capabilities. However, to date 3DGS has had limited impact on robotics, where high-speed egomotion is pervasive: Egomotion introduces motion blur and leads to artifacts in existing frame-based 3DGS reconstruction methods. To address this challenge, we introduce Event3DGS, an {\em event-based} 3DGS framework. By exploiting the exceptional temporal resolution of event cameras, Event3GDS can reconstruct high-fidelity 3D structure and appearance under high-speed egomotion. Extensive experiments on multiple synthetic and real-world datasets demonstrate the superiority of Event3DGS compared with existing event-based dense 3D scene reconstruction frameworks; Event3DGS substantially improves reconstruction quality (+3dB) while reducing computational costs by 95\%. Our framework also allows one to incorporate a few motion-blurred frame-based measurements into the reconstruction process to further improve appearance fidelity without loss of structural accuracy.
June 2024. https://arxiv.org/abs/2406.02972
606 GSDF: 3DGS Meets SDF for Improved Rendering and Reconstruction Mulin Yu,Tao Lu,Linning Xu,Lihan Jiang,Yuanbo Xiangli,Bo Dai
AbstractPresenting a 3D scene from multiview images remains a core and long-standing challenge in computer vision and computer graphics. Two main requirements lie in rendering and reconstruction. Notably, SOTA rendering quality is usually achieved with neural volumetric rendering techniques, which rely on aggregated point/primitive-wise color and neglect the underlying scene geometry. Learning of neural implicit surfaces is sparked from the success of neural rendering. Current works either constrain the distribution of density fields or the shape of primitives, resulting in degraded rendering quality and flaws on the learned scene surfaces. The efficacy of such methods is limited by the inherent constraints of the chosen neural representation, which struggles to capture fine surface details, especially for larger, more intricate scenes. To address these issues, we introduce GSDF, a novel dual-branch architecture that combines the benefits of a flexible and efficient 3D Gaussian Splatting (3DGS) representation with neural Signed Distance Fields (SDF). The core idea is to leverage and enhance the strengths of each branch while alleviating their limitation through mutual guidance and joint supervision. We show on diverse scenes that our design unlocks the potential for more accurate and detailed surface reconstructions, and at the meantime benefits 3DGS rendering with structures that are more aligned with the underlying geometry.
March 2024. https://arxiv.org/abs/2403.16964
605 Gaussian Splatting Visual MPC for Granular Media Manipulation Wei-Cheng Tseng,Ellina Zhang,Krishna Murthy Jatavallabhula,Florian Shkurti
AbstractRecent advancements in learned 3D representations have enabled significant progress in solving complex robotic manipulation tasks, particularly for rigid-body objects. However, manipulating granular materials such as beans, nuts, and rice, remains challenging due to the intricate physics of particle interactions, high-dimensional and partially observable state, inability to visually track individual particles in a pile, and the computational demands of accurate dynamics prediction. Current deep latent dynamics models often struggle to generalize in granular material manipulation due to a lack of inductive biases. In this work, we propose a novel approach that learns a visual dynamics model over Gaussian splatting representations of scenes and leverages this model for manipulating granular media via Model-Predictive Control. Our method enables efficient optimization for complex manipulation tasks on piles of granular media. We evaluate our approach in both simulated and real-world settings, demonstrating its ability to solve unseen planning tasks and generalize to new environments in a zero-shot transfer. We also show significant prediction and manipulation performance improvements compared to existing granular media manipulation methods.
October 2024. https://arxiv.org/abs/2410.09740
604 SurgicalGS: Dynamic 3D Gaussian Splatting for Accurate Robotic-Assisted Surgical Scene Reconstruction Jialei Chen,Xin Zhang,Mobarakol Islam,Francisco Vasconcelos,Danail Stoyanov,Daniel S. Elson,Baoru Huang
AbstractAccurate 3D reconstruction of dynamic surgical scenes from endoscopic video is essential for robotic-assisted surgery. While recent 3D Gaussian Splatting methods have shown promise in achieving high-quality reconstructions with fast rendering speeds, their use of inverse depth loss functions compresses depth variations. This can lead to a loss of fine geometric details, limiting their ability to capture precise 3D geometry and effectiveness in intraoperative application. To address these challenges, we present SurgicalGS, a dynamic 3D Gaussian Splatting framework specifically designed for surgical scene reconstruction with improved geometric accuracy. Our approach first initialises a Gaussian point cloud using depth priors, employing binary motion masks to identify pixels with significant depth variations and fusing point clouds from depth maps across frames for initialisation. We use the Flexible Deformation Model to represent dynamic scene and introduce a normalised depth regularisation loss along with an unsupervised depth smoothness constraint to ensure more accurate geometric reconstruction. Extensive experiments on two real surgical datasets demonstrate that SurgicalGS achieves state-of-the-art reconstruction quality, especially in terms of accurate geometry, advancing the usability of 3D Gaussian Splatting in robotic-assisted surgery.
October 2024. https://arxiv.org/abs/2410.09292
603 PH-Dropout: Practical Epistemic Uncertainty Quantification for View Synthesis Chuanhao Sun,Thanos Triantafyllou,Anthos Makris,Maja Drma\xc4\x8d,Kai Xu,Luo Mai,Mahesh K. Marina
AbstractView synthesis using Neural Radiance Fields (NeRF) and Gaussian Splatting (GS) has demonstrated impressive fidelity in rendering real-world scenarios. However, practical methods for accurate and efficient epistemic Uncertainty Quantification (UQ) in view synthesis are lacking. Existing approaches for NeRF either introduce significant computational overhead (e.g., 10x increase in training time" or 10x repeated training") or are limited to specific uncertainty conditions or models. Notably, GS models lack any systematic approach for comprehensive epistemic UQ. This capability is crucial for improving the robustness and scalability of neural view synthesis, enabling active model updates, error estimation, and scalable ensemble modeling based on uncertainty. In this paper, we revisit NeRF and GS-based methods from a function approximation perspective, identifying key differences and connections in 3D representation learning. Building on these insights, we introduce PH-Dropout (Post hoc Dropout), the first real-time and accurate method for epistemic uncertainty estimation that operates directly on pre-trained NeRF and GS models. Extensive evaluations validate our theoretical findings and demonstrate the effectiveness of PH-Dropout.
October 2024. https://arxiv.org/abs/2410.05468
602 MeshGS: Adaptive Mesh-Aligned Gaussian Splatting for High-Quality Rendering Jaehoon Choi,Yonghan Lee,Hyungtae Lee,Heesung Kwon,Dinesh Manocha
AbstractRecently, 3D Gaussian splatting has gained attention for its capability to generate high-fidelity rendering results. At the same time, most applications such as games, animation, and AR/VR use mesh-based representations to represent and render 3D scenes. We propose a novel approach that integrates mesh representation with 3D Gaussian splats to perform high-quality rendering of reconstructed real-world scenes. In particular, we introduce a distance-based Gaussian splatting technique to align the Gaussian splats with the mesh surface and remove redundant Gaussian splats that do not contribute to the rendering. We consider the distance between each Gaussian splat and the mesh surface to distinguish between tightly-bound and loosely-bound Gaussian splats. The tightly-bound splats are flattened and aligned well with the mesh geometry. The loosely-bound Gaussian splats are used to account for the artifacts in reconstructed 3D meshes in terms of rendering. We present a training strategy of binding Gaussian splats to the mesh geometry, and take into account both types of splats. In this context, we introduce several regularization techniques aimed at precisely aligning tightly-bound Gaussian splats with the mesh surface during the training process. We validate the effectiveness of our method on large and unbounded scene from mip-NeRF 360 and Deep Blending datasets. Our method surpasses recent mesh-based neural rendering techniques by achieving a 2dB higher PSNR, and outperforms mesh-based Gaussian splatting methods by 1.3 dB PSNR, particularly on the outdoor mip-NeRF 360 dataset, demonstrating better rendering quality. We provide analyses for each type of Gaussian splat and achieve a reduction in the number of Gaussian splats by 30% compared to the original 3D Gaussian splatting.
October 2024. https://arxiv.org/abs/2410.08941
601 Fast Feedforward 3D Gaussian Splatting Compression Yihang Chen,Qianyi Wu,Mengyao Li,Weiyao Lin,Mehrtash Harandi,Jianfei Cai
AbstractWith 3D Gaussian Splatting (3DGS) advancing real-time and high-fidelity rendering for novel view synthesis, storage requirements pose challenges for their widespread adoption. Although various compression techniques have been proposed, previous art suffers from a common limitation: for any existing 3DGS, per-scene optimization is needed to achieve compression, making the compression sluggish and slow. To address this issue, we introduce Fast Compression of 3D Gaussian Splatting (FCGS), an optimization-free model that can compress 3DGS representations rapidly in a single feed-forward pass, which significantly reduces compression time from minutes to seconds. To enhance compression efficiency, we propose a multi-path entropy module that assigns Gaussian attributes to different entropy constraint paths for balance between size and fidelity. We also carefully design both inter- and intra-Gaussian context models to remove redundancies among the unstructured Gaussian blobs. Overall, FCGS achieves a compression ratio of over 20X while maintaining fidelity, surpassing most per-scene SOTA optimization-based methods. Our code is available at: https://github.com/YihangChen-ee/FCGS.
October 2024. https://arxiv.org/abs/2410.08017
600 Learning Interaction-aware 3D Gaussian Splatting for One-shot Hand Avatars Xuan Huang,Hanhui Li,Wanquan Liu,Xiaodan Liang,Yiqiang Yan,Yuhao Cheng,Chengqiang Gao
AbstractIn this paper, we propose to create animatable avatars for interacting hands with 3D Gaussian Splatting (GS) and single-image inputs. Existing GS-based methods designed for single subjects often yield unsatisfactory results due to limited input views, various hand poses, and occlusions. To address these challenges, we introduce a novel two-stage interaction-aware GS framework that exploits cross-subject hand priors and refines 3D Gaussians in interacting areas. Particularly, to handle hand variations, we disentangle the 3D presentation of hands into optimization-based identity maps and learning-based latent geometric features and neural texture maps. Learning-based features are captured by trained networks to provide reliable priors for poses, shapes, and textures, while optimization-based identity maps enable efficient one-shot fitting of out-of-distribution hands. Furthermore, we devise an interaction-aware attention module and a self-adaptive Gaussian refinement module. These modules enhance image rendering quality in areas with intra- and inter-hand interactions, overcoming the limitations of existing GS-based methods. Our proposed method is validated via extensive experiments on the large-scale InterHand2.6M dataset, and it significantly improves the state-of-the-art performance in image quality. Project Page: \url{https://github.com/XuanHuang0/GuassianHand}.
October 2024. https://arxiv.org/abs/2410.08840
599 Look Gauss, No Pose: Novel View Synthesis using Gaussian Splatting without Accurate Pose Initialization Christian Schmidt,Jens Piekenbrinck,Bastian Leibe
Abstract3D Gaussian Splatting has recently emerged as a powerful tool for fast and accurate novel-view synthesis from a set of posed input images. However, like most novel-view synthesis approaches, it relies on accurate camera pose information, limiting its applicability in real-world scenarios where acquiring accurate camera poses can be challenging or even impossible. We propose an extension to the 3D Gaussian Splatting framework by optimizing the extrinsic camera parameters with respect to photometric residuals. We derive the analytical gradients and integrate their computation with the existing high-performance CUDA implementation. This enables downstream tasks such as 6-DoF camera pose estimation as well as joint reconstruction and camera refinement. In particular, we achieve rapid convergence and high accuracy for pose estimation on real-world scenes. Our method enables fast reconstruction of 3D scenes without requiring accurate pose information by jointly optimizing geometry and camera poses, while achieving state-of-the-art results in novel-view synthesis. Our approach is considerably faster to optimize than most competing methods, and several times faster in rendering. We show results on real-world scenes and complex trajectories through simulated environments, achieving state-of-the-art results on LLFF while reducing runtime by two to four times compared to the most efficient competing method. Source code will be available at https://github.com/Schmiddo/noposegs .
October 2024. https://arxiv.org/abs/2410.08743
598 Tetrahedron Splatting for 3D Generation Chun Gu,Zeyu Yang,Zijie Pan,Xiatian Zhu,Li Zhang
Abstract3D representation is essential to the significant advance of 3D generation with 2D diffusion priors. As a flexible representation, NeRF has been first adopted for 3D representation. With density-based volumetric rendering, it however suffers both intensive computational overhead and inaccurate mesh extraction. Using a signed distance field and Marching Tetrahedra, DMTet allows for precise mesh extraction and real-time rendering but is limited in handling large topological changes in meshes, leading to optimization challenges. Alternatively, 3D Gaussian Splatting (3DGS) is favored in both training and rendering efficiency while falling short in mesh extraction. In this work, we introduce a novel 3D representation, Tetrahedron Splatting (TeT-Splatting), that supports easy convergence during optimization, precise mesh extraction, and real-time rendering simultaneously. This is achieved by integrating surface-based volumetric rendering within a structured tetrahedral grid while preserving the desired ability of precise mesh extraction, and a tile-based differentiable tetrahedron rasterizer. Furthermore, we incorporate eikonal and normal consistency regularization terms for the signed distance field to improve generation quality and stability. Critically, our representation can be trained without mesh extraction, making the optimization process easier to converge. Our TeT-Splatting can be readily integrated in existing 3D generation pipelines, along with polygonal mesh for texture optimization. Extensive experiments show that our TeT-Splatting strikes a superior tradeoff among convergence speed, render efficiency, and mesh quality as compared to previous alternatives under varying 3D generation settings.
June 2024. https://arxiv.org/abs/2406.01579
597 FusionSense: Bridging Common Sense, Vision, and Touch for Robust Sparse-View Reconstruction Irving Fang,Kairui Shi,Xujin He,Siqi Tan,Yifan Wang,Hanwen Zhao,Hung-Jui Huang,Wenzhen Yuan,Chen Feng,Jing Zhang
AbstractHumans effortlessly integrate common-sense knowledge with sensory input from vision and touch to understand their surroundings. Emulating this capability, we introduce FusionSense, a novel 3D reconstruction framework that enables robots to fuse priors from foundation models with highly sparse observations from vision and tactile sensors. FusionSense addresses three key challenges: (i) How can robots efficiently acquire robust global shape information about the surrounding scene and objects? (ii) How can robots strategically select touch points on the object using geometric and common-sense priors? (iii) How can partial observations such as tactile signals improve the overall representation of the object? Our framework employs 3D Gaussian Splatting as a core representation and incorporates a hierarchical optimization strategy involving global structure construction, object visual hull pruning and local geometric constraints. This advancement results in fast and robust perception in environments with traditionally challenging objects that are transparent, reflective, or dark, enabling more downstream manipulation or navigation tasks. Experiments on real-world data suggest that our framework outperforms previously state-of-the-art sparse-view methods. All code and data are open-sourced on the project website.
October 2024. https://arxiv.org/abs/2410.08282
596 Poison-splat: Computation Cost Attack on 3D Gaussian Splatting Jiahao Lu,Yifan Zhang,Qiuhong Shen,Xinchao Wang,Shuicheng Yan
Abstract3D Gaussian splatting (3DGS), known for its groundbreaking performance and efficiency, has become a dominant 3D representation and brought progress to many 3D vision tasks. However, in this work, we reveal a significant security vulnerability that has been largely overlooked in 3DGS: the computation cost of training 3DGS could be maliciously tampered by poisoning the input data. By developing an attack named Poison-splat, we reveal a novel attack surface where the adversary can poison the input images to drastically increase the computation memory and time needed for 3DGS training, pushing the algorithm towards its worst computation complexity. In extreme cases, the attack can even consume all allocable memory, leading to a Denial-of-Service (DoS) that disrupts servers, resulting in practical damages to real-world 3DGS service vendors. Such a computation cost attack is achieved by addressing a bi-level optimization problem through three tailored strategies: attack objective approximation, proxy model rendering, and optional constrained optimization. These strategies not only ensure the effectiveness of our attack but also make it difficult to defend with simple defensive measures. We hope the revelation of this novel attack surface can spark attention to this crucial yet overlooked vulnerability of 3DGS systems.
October 2024. https://arxiv.org/abs/2410.08190
595 DifFRelight: Diffusion-Based Facial Performance Relighting Mingming He,Pascal Clausen,Ahmet Levent Ta\xc5\x9fel,Li Ma,Oliver Pilarski,Wenqi Xian,Laszlo Rikker,Xueming Yu,Ryan Burgert,Ning Yu,Paul Debevec
AbstractWe present a novel framework for free-viewpoint facial performance relighting using diffusion-based image-to-image translation. Leveraging a subject-specific dataset containing diverse facial expressions captured under various lighting conditions, including flat-lit and one-light-at-a-time (OLAT) scenarios, we train a diffusion model for precise lighting control, enabling high-fidelity relit facial images from flat-lit inputs. Our framework includes spatially-aligned conditioning of flat-lit captures and random noise, along with integrated lighting information for global control, utilizing prior knowledge from the pre-trained Stable Diffusion model. This model is then applied to dynamic facial performances captured in a consistent flat-lit environment and reconstructed for novel-view synthesis using a scalable dynamic 3D Gaussian Splatting method to maintain quality and consistency in the relit results. In addition, we introduce unified lighting control by integrating a novel area lighting representation with directional lighting, allowing for joint adjustments in light size and direction. We also enable high dynamic range imaging (HDRI) composition using multiple directional lights to produce dynamic sequences under complex lighting conditions. Our e

About

2024 Gaussian Splatting Paper List(Arxiv)

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •