Skip to content

Using TensorFlow to compare shallow versus deep neural network architectures for automatic music genre classification. Used to replicate parts of Schindler's paper, for COMSM0018.

Notifications You must be signed in to change notification settings

LukeStorry/music_genre_classification

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

86 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Music Genre Classification with Tensorflow

Replicating parts of Schindler's paper on Comparing Shallow versus Deep Neural Network Architectures for Automatic Music Genre Classification.

For COMSM0018, designed to be run efficiently on the University of Bristol's BC4 supercomputer.

Usage

python main.py [options]

command line options are:

  • --depth [shallow or deep] (default shallow)
  • --epochs [int] (default 100)
  • --samples [int] (default 11250)
  • --augment [bool] (default False)
  • --batch_normalisation [bool] (default False)
  • --batch_size [int] (default 16)

For example, to run a deep network with data-augmentation, with only 20 epochs and 1000 audio samples: python main.py --depth deep --augment True --epochs 20 --samples 1000

Requirements

  • Tensorflow 1.6
    • (The following is required for running on Blue Crystal)
      module add languages/anaconda2/5.0.1.tensorflow-1.6.0
  • librosa

About

Using TensorFlow to compare shallow versus deep neural network architectures for automatic music genre classification. Used to replicate parts of Schindler's paper, for COMSM0018.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages