-
Notifications
You must be signed in to change notification settings - Fork 63
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Documenter.jl
committed
Nov 10, 2024
1 parent
234f989
commit 17297d6
Showing
169 changed files
with
14,356 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,32 @@ | ||
<!DOCTYPE html> | ||
<html lang="en-US" dir="ltr"> | ||
<head> | ||
<meta charset="utf-8"> | ||
<meta name="viewport" content="width=device-width,initial-scale=1"> | ||
<title>404 | Lux.jl Docs</title> | ||
<meta name="description" content="Not Found"> | ||
<meta name="generator" content="VitePress v1.5.0"> | ||
<link rel="preload stylesheet" href="/previews/PR1064/assets/style.DlQHW2Xy.css" as="style"> | ||
<link rel="preload stylesheet" href="/previews/PR1064/vp-icons.css" as="style"> | ||
|
||
<script type="module" src="/previews/PR1064/assets/app.CNiQnQVz.js"></script> | ||
<link rel="preload" href="/previews/PR1064/assets/inter-roman-latin.Di8DUHzh.woff2" as="font" type="font/woff2" crossorigin=""> | ||
<script async src="https://www.googletagmanager.com/gtag/js?id=G-Q8GYTEVTZ2"></script> | ||
<script>window.dataLayer=window.dataLayer||[];function gtag(){dataLayer.push(arguments)}gtag("js",new Date),gtag("config","G-Q8GYTEVTZ2");</script> | ||
<link rel="apple-touch-icon" sizes="180x180" href="/apple-touch-icon.png"> | ||
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png"> | ||
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png"> | ||
<link rel="icon" href="/favicon.ico"> | ||
<link rel="manifest" href="/site.webmanifest"> | ||
<link rel="icon" href="REPLACE_ME_DOCUMENTER_VITEPRESS_FAVICON"> | ||
<script src="/versions.js"></script> | ||
<script src="/previews/PR1064/siteinfo.js"></script> | ||
<script id="check-dark-mode">(()=>{const e=localStorage.getItem("vitepress-theme-appearance")||"auto",a=window.matchMedia("(prefers-color-scheme: dark)").matches;(!e||e==="auto"?a:e==="dark")&&document.documentElement.classList.add("dark")})();</script> | ||
<script id="check-mac-os">document.documentElement.classList.toggle("mac",/Mac|iPhone|iPod|iPad/i.test(navigator.platform));</script> | ||
</head> | ||
<body> | ||
<div id="app"></div> | ||
<script>window.__VP_HASH_MAP__=JSON.parse("{\"api_accelerator_support_mldatadevices.md\":\"CqjBKCe5\",\"api_building_blocks_luxcore.md\":\"CWj2JkKI\",\"api_building_blocks_luxlib.md\":\"DsWavpsZ\",\"api_building_blocks_weightinitializers.md\":\"Dg2cyqFY\",\"api_lux_autodiff.md\":\"CFlpdQSU\",\"api_lux_contrib.md\":\"C2fzItaQ\",\"api_lux_distributed_utils.md\":\"CuseY7sP\",\"api_lux_interop.md\":\"CheuOrvr\",\"api_lux_layers.md\":\"vAK2lLkE\",\"api_lux_utilities.md\":\"CMLzAnnl\",\"api_testing_functionality_luxtestutils.md\":\"BKOueltK\",\"ecosystem.md\":\"DXGCPjgm\",\"index.md\":\"DFNivSNK\",\"introduction_citation.md\":\"BIRQbsEI\",\"introduction_index.md\":\"DAUR3Z7Z\",\"introduction_overview.md\":\"Cf8OKiqj\",\"introduction_resources.md\":\"CWQcQBRv\",\"introduction_updating_to_v1.md\":\"BfyzFgTc\",\"manual_autodiff.md\":\"DIgnq9ex\",\"manual_compiling_lux_models.md\":\"CG9VL38k\",\"manual_debugging.md\":\"CsypMPmr\",\"manual_dispatch_custom_input.md\":\"Bxub8XHC\",\"manual_distributed_utils.md\":\"B_5kX0J1\",\"manual_freezing_model_parameters.md\":\"toyqnsrm\",\"manual_gpu_management.md\":\"NueITCzH\",\"manual_interface.md\":\"qCAAPv6L\",\"manual_migrate_from_flux.md\":\"Dxl-h54B\",\"manual_nested_autodiff.md\":\"CMjAzv7E\",\"manual_nn_inside_gpu_kernels.md\":\"CdnBUd5k\",\"manual_performance_pitfalls.md\":\"VGYHeOqz\",\"manual_preferences.md\":\"iIUSzeju\",\"manual_weight_initializers.md\":\"BARArxSq\",\"tutorials_advanced_1_gravitationalwaveform.md\":\"Bdiha9yy\",\"tutorials_beginner_1_basics.md\":\"C5Mlp2xs\",\"tutorials_beginner_2_polynomialfitting.md\":\"pNtEPmGb\",\"tutorials_beginner_3_simplernn.md\":\"CKmlbAQn\",\"tutorials_beginner_4_simplechains.md\":\"BNOdqvmT\",\"tutorials_beginner_5_optimizationintegration.md\":\"nEelU5eC\",\"tutorials_index.md\":\"BwyJiqTw\",\"tutorials_intermediate_1_neuralode.md\":\"T7yZkACf\",\"tutorials_intermediate_2_bayesiannn.md\":\"CyDMGSNL\",\"tutorials_intermediate_3_hypernet.md\":\"Dwbll4g-\",\"tutorials_intermediate_4_pinn2dpde.md\":\"CTTSsres\"}");window.__VP_SITE_DATA__=JSON.parse("{\"lang\":\"en-US\",\"dir\":\"ltr\",\"title\":\"Lux.jl Docs\",\"description\":\"Documentation for LuxDL Repositories\",\"base\":\"/previews/PR1064/\",\"head\":[],\"router\":{\"prefetchLinks\":true},\"appearance\":true,\"themeConfig\":{\"outline\":\"deep\",\"logo\":{\"light\":\"/lux-logo.svg\",\"dark\":\"/lux-logo-dark.svg\"},\"search\":{\"provider\":\"local\",\"options\":{\"detailedView\":true}},\"nav\":[{\"text\":\"Home\",\"link\":\"/\"},{\"text\":\"Getting Started\",\"link\":\"/introduction\"},{\"text\":\"Benchmarks\",\"link\":\"https://lux.csail.mit.edu/benchmarks/\"},{\"text\":\"Tutorials\",\"link\":\"/tutorials/\"},{\"text\":\"Manual\",\"link\":\"/manual/interface\"},{\"text\":\"API\",\"items\":[{\"text\":\"Lux\",\"items\":[{\"text\":\"Built-In Layers\",\"link\":\"/api/Lux/layers\"},{\"text\":\"Automatic Differentiation\",\"link\":\"/api/Lux/autodiff\"},{\"text\":\"Utilities\",\"link\":\"/api/Lux/utilities\"},{\"text\":\"Experimental\",\"link\":\"/api/Lux/contrib\"},{\"text\":\"InterOp\",\"link\":\"/api/Lux/interop\"},{\"text\":\"DistributedUtils\",\"link\":\"/api/Lux/distributed_utils\"}]},{\"text\":\"Accelerator Support\",\"items\":[{\"text\":\"MLDataDevices\",\"link\":\"/api/Accelerator_Support/MLDataDevices\"}]},{\"text\":\"Building Blocks\",\"items\":[{\"text\":\"LuxCore\",\"link\":\"/api/Building_Blocks/LuxCore\"},{\"text\":\"LuxLib\",\"link\":\"/api/Building_Blocks/LuxLib\"},{\"text\":\"WeightInitializers\",\"link\":\"/api/Building_Blocks/WeightInitializers\"},{\"text\":\"NNlib\",\"link\":\"https://fluxml.ai/NNlib.jl/dev/\"},{\"text\":\"Activation Functions\",\"link\":\"https://fluxml.ai/NNlib.jl/dev/reference/#Activation-Functions\"}]},{\"text\":\"Testing Functionality\",\"items\":[{\"text\":\"LuxTestUtils\",\"link\":\"/api/Testing_Functionality/LuxTestUtils\"}]}]},{\"component\":\"VersionPicker\"}],\"sidebar\":{\"/introduction/\":{\"text\":\"Getting Started\",\"collapsed\":false,\"items\":[{\"text\":\"Introduction\",\"link\":\"/introduction\"},{\"text\":\"Overview\",\"link\":\"/introduction/overview\"},{\"text\":\"Resources\",\"link\":\"/introduction/resources\"},{\"text\":\"Updating to v1\",\"link\":\"/introduction/updating_to_v1\"},{\"text\":\"Citation\",\"link\":\"/introduction/citation\"}]},\"/tutorials/\":{\"text\":\"Tutorials\",\"collapsed\":false,\"items\":[{\"text\":\"Overview\",\"link\":\"/tutorials/\"},{\"text\":\"Beginner\",\"collapsed\":false,\"items\":[{\"text\":\"Julia & Lux for the Uninitiated\",\"link\":\"/tutorials/beginner/1_Basics\"},{\"text\":\"Fitting a Polynomial using MLP\",\"link\":\"/tutorials/beginner/2_PolynomialFitting\"},{\"text\":\"Training a Simple LSTM\",\"link\":\"/tutorials/beginner/3_SimpleRNN\"},{\"text\":\"MNIST Classification with SimpleChains\",\"link\":\"/tutorials/beginner/4_SimpleChains\"},{\"text\":\"Fitting with Optimization.jl\",\"link\":\"/tutorials/beginner/5_OptimizationIntegration\"}]},{\"text\":\"Intermediate\",\"collapsed\":false,\"items\":[{\"text\":\"MNIST Classification using Neural ODEs\",\"link\":\"/tutorials/intermediate/1_NeuralODE\"},{\"text\":\"Bayesian Neural Network\",\"link\":\"/tutorials/intermediate/2_BayesianNN\"},{\"text\":\"Training a HyperNetwork on MNIST and FashionMNIST\",\"link\":\"/tutorials/intermediate/3_HyperNet\"},{\"text\":\"Training a PINN on 2D PDE\",\"link\":\"/tutorials/intermediate/4_PINN2DPDE\"}]},{\"text\":\"Advanced\",\"collapsed\":false,\"items\":[{\"text\":\"Training a Neural ODE to Model Gravitational Waveforms\",\"link\":\"/tutorials/advanced/1_GravitationalWaveForm\"}]},{\"text\":\"Large Models\",\"collapsed\":true,\"items\":[{\"text\":\"Training Image Classification Models on ImageNet with Distributed Data Parallel Training\",\"link\":\"https://github.com/LuxDL/Lux.jl/tree/main/examples/ImageNet\"},{\"text\":\"Training a DDIM (Diffusion Model) for Image Generation\",\"link\":\"https://github.com/LuxDL/Lux.jl/tree/main/examples/DDIM\"},{\"text\":\"ConvMixer on CIFAR-10\",\"link\":\"https://github.com/LuxDL/Lux.jl/tree/main/examples/ConvMixer\"}]},{\"text\":\"3rd Party Tutorials\",\"collapsed\":true,\"items\":[{\"text\":\"PINNs (NeuralPDE.jl)\",\"link\":\"https://docs.sciml.ai/NeuralPDE/stable/tutorials/pdesystem/\"},{\"text\":\"UDEs (SciMLSensitivity.jl)\",\"link\":\"https://docs.sciml.ai/SciMLSensitivity/stable/tutorials/data_parallel/\"},{\"text\":\"Neural DEs (DiffEqFlux.jl)\",\"link\":\"https://docs.sciml.ai/DiffEqFlux/stable/examples/neural_ode/\"},{\"text\":\"DEQs (DeepEquilibriumNetworks.jl)\",\"link\":\"https://docs.sciml.ai/DeepEquilibriumNetworks/stable/tutorials/basic_mnist_deq/\"},{\"text\":\"Medical Image Segmentation\",\"link\":\"https://github.com/Dale-Black/ComputerVisionTutorials.jl/\"},{\"text\":\"Neural closure models\",\"link\":\"https://github.com/agdestein/NeuralClosureTutorials/\"}]}]},\"/manual/\":{\"text\":\"Manual\",\"collapsed\":false,\"items\":[{\"text\":\"Basics\",\"items\":[{\"text\":\"Lux Interface\",\"link\":\"/manual/interface\"},{\"text\":\"Freezing Parameters\",\"link\":\"/manual/freezing_model_parameters\"},{\"text\":\"GPU Management\",\"link\":\"/manual/gpu_management\"},{\"text\":\"Initializing Weights\",\"link\":\"/manual/weight_initializers\"}]},{\"text\":\"Automatic Differentiation\",\"items\":[{\"text\":\"Automatic Differentiation\",\"link\":\"/manual/autodiff\"},{\"text\":\"Nested AutoDiff\",\"link\":\"/manual/nested_autodiff\"}]},{\"text\":\"Debugging / Performance Enhancement Tools\",\"items\":[{\"text\":\"Debugging Lux Models\",\"link\":\"/manual/debugging\"},{\"text\":\"Performance Pitfalls\",\"link\":\"/manual/performance_pitfalls\"}]},{\"text\":\"Migration Guides\",\"items\":[{\"text\":\"Migrating from Flux\",\"link\":\"/manual/migrate_from_flux\"}]},{\"text\":\"Advanced Usage\",\"items\":[{\"text\":\"Custom Input Types\",\"link\":\"/manual/dispatch_custom_input\"},{\"text\":\"Configuration via Preferences\",\"link\":\"/manual/preferences\"},{\"text\":\"Distributed Training\",\"link\":\"/manual/distributed_utils\"},{\"text\":\"Compiling Lux Models (Reactant)\",\"link\":\"/manual/compiling_lux_models\"},{\"text\":\"Lux In GPU Kernels\",\"link\":\"/manual/nn_inside_gpu_kernels\"}]}]},\"/api/\":{\"text\":\"API Reference\",\"collapsed\":false,\"items\":[{\"text\":\"Lux\",\"collapsed\":false,\"items\":[{\"text\":\"Built-In Layers\",\"link\":\"/api/Lux/layers\"},{\"text\":\"Automatic Differentiation\",\"link\":\"/api/Lux/autodiff\"},{\"text\":\"Utilities\",\"link\":\"/api/Lux/utilities\"},{\"text\":\"Experimental Features\",\"link\":\"/api/Lux/contrib\"},{\"text\":\"Interoperability\",\"link\":\"/api/Lux/interop\"},{\"text\":\"DistributedUtils\",\"link\":\"/api/Lux/distributed_utils\"}]},{\"text\":\"Accelerator Support\",\"collapsed\":false,\"items\":[{\"text\":\"MLDataDevices\",\"link\":\"/api/Accelerator_Support/MLDataDevices\"}]},{\"text\":\"Building Blocks\",\"collapsed\":false,\"items\":[{\"text\":\"LuxCore\",\"link\":\"/api/Building_Blocks/LuxCore\"},{\"text\":\"LuxLib\",\"link\":\"/api/Building_Blocks/LuxLib\"},{\"text\":\"WeightInitializers\",\"link\":\"/api/Building_Blocks/WeightInitializers\"},{\"text\":\"NNlib\",\"link\":\"https://fluxml.ai/NNlib.jl/dev/\"},{\"text\":\"Activation Functions\",\"link\":\"https://fluxml.ai/NNlib.jl/dev/reference/#Activation-Functions\"}]},{\"text\":\"Testing Functionality\",\"collapsed\":false,\"items\":[{\"text\":\"LuxTestUtils\",\"link\":\"/api/Testing_Functionality/LuxTestUtils\"}]}]}},\"editLink\":{\"pattern\":\"https://github.com/LuxDL/Lux.jl/edit/main/docs/src/:path\",\"text\":\"Edit this page on GitHub\"},\"socialLinks\":[{\"icon\":\"github\",\"link\":\"https://github.com/LuxDL/Lux.jl\"},{\"icon\":\"twitter\",\"link\":\"https://twitter.com/avikpal1410\"},{\"icon\":\"slack\",\"link\":\"https://julialang.org/slack/\"}],\"footer\":{\"message\":\"Made with <a href=\\\"https://documenter.juliadocs.org/stable/\\\" target=\\\"_blank\\\"><strong>Documenter.jl</strong></a>, <a href=\\\"https://vitepress.dev\\\" target=\\\"_blank\\\"><strong>VitePress</strong></a> and <a href=\\\"https://luxdl.github.io/DocumenterVitepress.jl/stable\\\" target=\\\"_blank\\\"><strong>DocumenterVitepress.jl</strong></a><br>Released under the MIT License. Powered by the <a href=\\\"https://www.julialang.org\\\">Julia Programming Language</a>.<br>\",\"copyright\":\"© Copyright 2024 Avik Pal.\"},\"lastUpdated\":{\"text\":\"Updated at\",\"formatOptions\":{\"dateStyle\":\"full\",\"timeStyle\":\"medium\"}}},\"locales\":{},\"scrollOffset\":134,\"cleanUrls\":true}");</script> | ||
|
||
</body> | ||
</html> |
61 changes: 61 additions & 0 deletions
61
previews/PR1064/api/Accelerator_Support/MLDataDevices.html
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
86 changes: 86 additions & 0 deletions
86
previews/PR1064/api/Building_Blocks/WeightInitializers.html
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
Large diffs are not rendered by default.
Oops, something went wrong.
46 changes: 46 additions & 0 deletions
46
previews/PR1064/api/Testing_Functionality/LuxTestUtils.html
Large diffs are not rendered by default.
Oops, something went wrong.
Oops, something went wrong.