ROS 1 和 ROS 2 的前世、今生、安装使用说明与资料汇总
Mastering-ROS-for-Robotics-Programming-Second-Edition 代码
#include "ros/ros.h"
#include "std_msgs/String.h"// 字符串消息 其他 int.h
#include <sstream>
int main(int argc, char **argv)
{
ros::init(argc, argv, "example1a");// 节点初始化
ros::NodeHandle n;
ros::Publisher pub = n.advertise<std_msgs::String>("message", 100);// 发布消息到 message 话题,100个数据空间
ros::Rate loop_rate(10);// 发送频率
while (ros::ok())
{
std_msgs::String msg;
std::stringstream ss;
ss << "Hello World!"; // 生成消息
msg.data = ss.str();
pub.publish(msg);// 发布
ros::spinOnce();// 给ros控制权
loop_rate.sleep();// 时间没到,休息
}
return 0;
}
#include "ros/ros.h"
#include "std_msgs/String.h"
// 订阅消息的回调函数
void messageCallback(const std_msgs::String::ConstPtr& msg)
{
ROS_INFO("Thanks: [%s]", msg->data.c_str());
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "example1b");
ros::NodeHandle n;
// 订阅话题,消息,接收到消息就会 调用 回调函数 messageCallback
ros::Subscriber sub = n.subscribe("message", 100, messageCallback);
ros::spin();
return 0;
}
#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_msg.h" // 项目 msg文件下
// msg/chapter2_msg.msg 包含3个整数的消息
// int32 A
// int32 B
// int32 C
#include <sstream>
int main(int argc, char **argv)
{
ros::init(argc, argv, "example2a");
ros::NodeHandle n;
// 发布自定义消息====
ros::Publisher pub = n.advertise<chapter2_tutorials::chapter2_msg>("chapter2_tutorials/message", 100);
ros::Rate loop_rate(10);
while (ros::ok())
{
chapter2_tutorials::chapter2_msg msg;
msg.A = 1;
msg.B = 2;
msg.C = 3;
pub.publish(msg);
ros::spinOnce();
loop_rate.sleep();
}
return 0;
}
#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_msg.h"
void messageCallback(const chapter2_tutorials::chapter2_msg::ConstPtr& msg)
{
ROS_INFO("I have received: [%d] [%d] [%d]", msg->A, msg->B, msg->C);
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "example3_b");
ros::NodeHandle n;
// 订阅自定义消息===
ros::Subscriber sub = n.subscribe("chapter2_tutorials/message", 100, messageCallback);
ros::spin();
return 0;
}
#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_srv.h" // 项目 srv文件下
// chapter2_srv.srv
// int32 A 请求
// int32 B
// ---
// int32 sum 响应---该服务完成求和服务
// 服务回调函数==== 服务提供方具有 服务回调函数
bool add(chapter2_tutorials::chapter2_srv::Request &req, // 请求
chapter2_tutorials::chapter2_srv::Response &res) // 回应
{
res.sum = req.A + req.B; // 求和服务
ROS_INFO("Request: A=%d, B=%d", (int)req.A, (int)req.B);
ROS_INFO("Response: [%d]", (int)res.sum);
return true;
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "adder_server");
ros::NodeHandle n;
// 发布服务(打广告) 广而告之 街头叫卖 等待被撩.jpg
ros::ServiceServer service = n.advertiseService("chapter2_tutorials/adder", add);
ROS_INFO("adder_server has started");
ros::spin();
return 0;
}
#include "ros/ros.h"
#include "chapter2_tutorials/chapter2_srv.h"
#include <cstdlib>
int main(int argc, char **argv)
{
ros::init(argc, argv, "adder_client");
if (argc != 3)
{
ROS_INFO("Usage: adder_client A B ");
return 1;
}
ros::NodeHandle n;
// 服务客户端,需求端,调用服务
ros::ServiceClient client = n.serviceClient<chapter2_tutorials::chapter2_srv>("chapter2_tutorials/adder");
//创建服务类型
chapter2_tutorials::chapter2_srv srv;
// 设置请求内容
srv.request.A = atoll(argv[1]);
srv.request.B = atoll(argv[2]);
// 调用服务===
if (client.call(srv))
{
// 打印服务带有的响应数据====
ROS_INFO("Sum: %ld", (long int)srv.response.sum);
}
else
{
ROS_ERROR("Failed to call service adder_server");
return 1;
}
return 0;
}
CMakeLists.txt
cmake_minimum_required(VERSION 2.8.3)
project(chapter2_tutorials) # 项目名称
## 依赖包===========
find_package(catkin REQUIRED COMPONENTS
roscpp
std_msgs
message_generation # 生成自定义消息的头文件
dynamic_reconfigure
)
## 自定义消息文件====
add_message_files(
FILES
chapter2_msg.msg
)
## 自定义服务文件====
add_service_files(
FILES
chapter2_srv.srv
)
## 生成消息头文件
generate_messages(
DEPENDENCIES
std_msgs
)
## 依赖
catkin_package(
CATKIN_DEPENDS message_runtime
)
## 编译依赖库文件
include_directories(
include
${catkin_INCLUDE_DIRS}
)
# 创建可执行文件
add_executable(example1a src/example_1a.cpp)
add_executable(example1b src/example_1b.cpp)
add_executable(example2a src/example_2a.cpp)
add_executable(example2b src/example_2b.cpp)
add_executable(example3a src/example_3a.cpp)
add_executable(example3b src/example_3b.cpp)
## 添加依赖
add_dependencies(example1a chapter2_tutorials_generate_messages_cpp)
add_dependencies(example1b chapter2_tutorials_generate_messages_cpp)
add_dependencies(example2a chapter2_tutorials_generate_messages_cpp)
add_dependencies(example2b chapter2_tutorials_generate_messages_cpp)
add_dependencies(example3a chapter2_tutorials_generate_messages_cpp)
add_dependencies(example3b chapter2_tutorials_generate_messages_cpp)
# 动态链接库
target_link_libraries(example1a ${catkin_LIBRARIES})
target_link_libraries(example1b ${catkin_LIBRARIES})
target_link_libraries(example2a ${catkin_LIBRARIES})
target_link_libraries(example2b ${catkin_LIBRARIES})
target_link_libraries(example3a ${catkin_LIBRARIES})
target_link_libraries(example3b ${catkin_LIBRARIES})
// 类似于服务,但是是应对 服务任务较长的情况,避免客户端长时间等待,
// 以及服务结果是一个序列,例如一件工作先后很多步骤完成
#include <ros/ros.h>
#include <actionlib/server/simple_action_server.h> // action 服务器
#include <actionlib_tutorials/FibonacciAction.h> // 自定义的 action类型 产生斐波那契数列
// action/Fibonacci.action
// #goal definition 任务目标
// int32 order
// ---
// #result definition 最终 结果
// int32[] sequence
// ---
// #feedback 反馈 序列 记录中间 递增 序列
// int32[] sequence
// 定义的一个类========================
class FibonacciAction
{
// 私有=============
protected:
ros::NodeHandle nh_; // 节点实例
// 节点实例必须先被创建 NodeHandle instance
actionlib::SimpleActionServer<actionlib_tutorials::FibonacciAction> as_; // 行动服务器,输入自定义的模板类似
std::string action_name_;// 行动名称
// 行动消息,用来发布的 反馈feedback / 结果result
actionlib_tutorials::FibonacciFeedback feedback_;
actionlib_tutorials::FibonacciResult result_;
// 公开==================
public:
// 类构造函数=============
FibonacciAction(std::string name) :
// 行动服务器 需要绑定 行动回调函数===FibonacciAction::executeCB====
as_(nh_, name, boost::bind(&FibonacciAction::executeCB, this, _1), false),
action_name_(name)
{
as_.start();// 启动
}
// 类析构函数========
~FibonacciAction(void)
{
}
// 行动回调函数=========
void executeCB(const actionlib_tutorials::FibonacciGoalConstPtr &goal)
{
ros::Rate r(1);// 频率
bool success = true;// 标志
/* the seeds for the fibonacci sequence */
feedback_.sequence.clear();// 结果以及反馈
feedback_.sequence.push_back(0); // 斐波那契数列
feedback_.sequence.push_back(1);
ROS_INFO("%s: Executing, creating fibonacci sequence of order %i with seeds %i, %i", action_name_.c_str(), goal->order, feedback_.sequence[0], feedback_.sequence[1]);
/* start executing the action */
for(int i=1; i<=goal->order; i++)// order 为序列数量
{
/* check that preempt has not been requested by the client */
if (as_.isPreemptRequested() || !ros::ok())
{
ROS_INFO("%s: Preempted", action_name_.c_str());
/* set the action state to preempted */
as_.setPreempted();
success = false;
break;
}
// 产生后一个数
feedback_.sequence.push_back(feedback_.sequence[i] + feedback_.sequence[i-1]);
/* publish the feedback */
as_.publishFeedback(feedback_);// 发布
/* this sleep is not necessary, however, the sequence is computed at 1 Hz for demonstration purposes */
r.sleep();
}
if(success)
{
// 最终结果
result_.sequence = feedback_.sequence;
ROS_INFO("%s: Succeeded", action_name_.c_str());
/* set the action state to succeeded */
as_.setSucceeded(result_);
}
}
};
int main(int argc, char** argv)
{
ros::init(argc, argv, "fibonacci server");
FibonacciAction fibonacci("fibonacci");
ros::spin();
return 0;
}
#include <ros/ros.h>
#include <actionlib/client/simple_action_client.h>// action 客户端
#include <actionlib/client/terminal_state.h> // action 状态
#include <actionlib_tutorials/FibonacciAction.h> // 自定义行动类型
int main (int argc, char **argv)
{
ros::init(argc, argv, "fibonacci client");
/* create the action client
"true" causes the client to spin its own thread */
// action 客户端 =====
actionlib::SimpleActionClient<actionlib_tutorials::FibonacciAction> ac("fibonacci", true);
ROS_INFO("Waiting for action server to start.");
/* will be waiting for infinite time */
ac.waitForServer(); // 等待 行动服务器启动
ROS_INFO("Action server started, sending goal.");
// 发布任务目标 产生20个数量的 斐波那契数列序列
actionlib_tutorials::FibonacciGoal goal;
goal.order = 20;
ac.sendGoal(goal);// 发给 行动服务器=====
// 等待 行动 执行结果
bool finished_before_timeout = ac.waitForResult(ros::Duration(30.0));
if (finished_before_timeout)
{
actionlib::SimpleClientGoalState state = ac.getState();// 状态
ROS_INFO("Action finished: %s",state.toString().c_str());
}
else
ROS_INFO("Action doesnot finish before the time out.");
return 0;
}
CMakeLists.txt
cmake_minimum_required(VERSION 2.8.3)
project(actionlib_tutorials)
# add_compile_options(-std=c++11)
# 找到包依赖
find_package(catkin REQUIRED COMPONENTS
actionlib
actionlib_msgs
message_generation
roscpp
rospy
std_msgs
)
## 行动自定义文件
add_action_files(
DIRECTORY action
FILES Fibonacci.action
)
## 生成行动类型 头文件
generate_messages(
DEPENDENCIES actionlib_msgs std_msgs
)
## 包依赖
catkin_package(
INCLUDE_DIRS include
LIBRARIES actionlib_tutorials
CATKIN_DEPENDS actionlib actionlib_msgs message_generation roscpp rospy std_msgs
DEPENDS system_lib
)
## 包含
include_directories(
# include
${catkin_INCLUDE_DIRS}
)
## 编译 连接
add_executable(fibonacci_server src/fibonacci_server.cpp)
add_executable(fibonacci_client src/fibonacci_client.cpp)
target_link_libraries(fibonacci_server ${catkin_LIBRARIES})
target_link_libraries(fibonacci_client ${catkin_LIBRARIES})
add_dependencies(fibonacci_server ${actionlib_tutorials_EXPORTED_TARGETS})
add_dependencies(fibonacci_client ${actionlib_tutorials_EXPORTED_TARGETS})
#include <ros/ros.h>
#include <dynamic_reconfigure/server.h>// 动态参数 调整
#include <parameter_server_tutorials/parameter_server_Config.h> // 自定义的 配置参数列表
// cfg/parameter_server_tutorials.cfg===========
/*
# coding:utf-8
#!/usr/bin/env python
PACKAGE = "parameter_server_tutorials" # 包名
from dynamic_reconfigure.parameter_generator_catkin import *
gen = ParameterGenerator()# 参数生成器
# 参数列表 ====================
gen.add("BOOL_PARAM", bool_t, 0, "A Boolean parameter", True) # BOOL量类型参数
gen.add("INT_PARAM", int_t, 0, "An Integer Parameter", 1, 0, 100) # 整形量参数
gen.add("DOUBLE_PARAM", double_t, 0, "A Double Parameter", 0.01, 0, 1)# 浮点型变量参数
gen.add("STR_PARAM", str_t, 0, "A String parameter", "Dynamic Reconfigure") # 字符串类型变量参数
# 自定义 枚举常量 类型 ==========
size_enum = gen.enum([ gen.const("Low", int_t, 0, "Low : 0"),
gen.const("Medium", int_t, 1, "Medium : 1"),
gen.const("High", int_t, 2, "Hight :2")],
"Selection List")
# 添加自定义 变量类型
gen.add("SIZE", int_t, 0, "Selection List", 1, 0, 3, edit_method=size_enum)
# 生成 动态参数配置 头文件 以 parameter_server_ 为前缀
exit(gen.generate(PACKAGE, "parameter_server_tutorials", "parameter_server_"))
*/
// 参数改变后 的回调函数,parameter_server_Config 为参数头
void callback(parameter_server_tutorials::parameter_server_Config &config, uint32_t level)
{
ROS_INFO("Reconfigure Request: %s %d %f %s %d",
config.BOOL_PARAM?"True":"False",
config.INT_PARAM,
config.DOUBLE_PARAM,
config.STR_PARAM.c_str(),
config.SIZE);
}
int main(int argc, char **argv)
{
ros::init(argc, argv, "parameter_server_tutorials");
dynamic_reconfigure::Server<parameter_server_tutorials::parameter_server_Config> server;// 参数服务器
dynamic_reconfigure::Server<parameter_server_tutorials::parameter_server_Config>::CallbackType f;// 参数改变 回调类型
// 绑定回调函数
f = boost::bind(&callback, _1, _2);
// 参数服务器设置 回调器
server.setCallback(f);
ROS_INFO("Spinning");
ros::spin();// 启动
return 0;
}
CMakeLists.txt
cmake_minimum_required(VERSION 2.8.3)
project(parameter_server_tutorials)
# add_compile_options(-std=c++11)
# 找到包
find_package(catkin REQUIRED COMPONENTS
roscpp
std_msgs
message_generation
dynamic_reconfigure
)
# 动态参数配置文件
generate_dynamic_reconfigure_options(
cfg/parameter_server_tutorials.cfg
)
# 依赖
catkin_package(
CATKIN_DEPENDS message_runtime
)
# 包含
include_directories(
include
${catkin_INCLUDE_DIRS}
)
# 生成可执行文件
add_executable(parameter_server_tutorials src/parameter_server_tutorials.cpp)
add_dependencies(parameter_server_tutorials parameter_server_tutorials_gencfg)
target_link_libraries(parameter_server_tutorials ${catkin_LIBRARIES})
#include <ros/ros.h>
#include <tf/transform_broadcaster.h> // 坐标变换发布/广播
#include <turtlesim/Pose.h>// 小乌龟位置类型
std::string turtle_name;
// 小乌龟 位姿 话题 回调函数 =======
void poseCallback(const turtlesim::PoseConstPtr& msg)
{
static tf::TransformBroadcaster br;// 坐标变换广播
tf::Transform transform;// 坐标变换
transform.setOrigin( tf::Vector3(msg->x, msg->y, 0.0) );// 坐标位置
tf::Quaternion q;// 位姿四元素
q.setRPY(0, 0, msg->theta);// 按照 rpy 姿态向量形式设置 平面上只有 绕Z轴的旋转 偏航角
transform.setRotation(q);// 姿态
// 广播位姿变换消息=====
br.sendTransform(tf::StampedTransform(transform, ros::Time::now(), "world", turtle_name));
}
int main(int argc, char** argv)
{
ros::init(argc, argv, "tf_broadcaster");
if (argc != 2){ROS_ERROR("need turtle name as argument"); return -1;};
turtle_name = argv[1];
ros::NodeHandle node;
// 订阅小乌龟 位姿 话题数据 绑定回调函数 poseCallback
ros::Subscriber sub = node.subscribe(turtle_name+"/pose", 10, &poseCallback);
ros::spin();
return 0;
}
#include <ros/ros.h>
#include <tf/transform_listener.h>// 坐标变换监听
#include <geometry_msgs/Twist.h> // 消息类型
#include <turtlesim/Spawn.h>// 生成一个小乌龟
int main(int argc, char** argv)
{
ros::init(argc, argv, "tf_listener");
ros::NodeHandle node;
ros::service::waitForService("spawn");// 等待 生成小乌龟的服务到来
ros::ServiceClient add_turtle =
node.serviceClient<turtlesim::Spawn>("spawn"); // 服务客户端
turtlesim::Spawn srv;
add_turtle.call(srv); // 调用服务
// 发布小乌龟运动指令=====
ros::Publisher turtle_vel =
node.advertise<geometry_msgs::Twist>("turtle2/cmd_vel", 10);
// 左边变换监听
tf::TransformListener listener;
ros::Rate rate(10.0);
while (node.ok())
{
tf::StampedTransform transform; // 得到的坐标变换消息
try
{
// 两个小乌龟坐标变换消息 之差 左边变换??
// 有两个 坐标变换发布器 一个发布 /turtle1 一个发布 /turtle2
listener.lookupTransform("/turtle2", "/turtle1",
ros::Time(0), transform);
}
catch (tf::TransformException &ex)
{
ROS_ERROR("%s",ex.what());
ros::Duration(1.0).sleep();
continue;
}
// 根据位姿差,发布 命令 让 小乌龟2 追赶上 小乌龟1
geometry_msgs::Twist vel_msg;
// 位置差值 计算角度
vel_msg.angular.z = 4.0 * atan2(transform.getOrigin().y(),
transform.getOrigin().x());
// 位置直线距离,关联到速度
vel_msg.linear.x = 0.5 * sqrt(pow(transform.getOrigin().x(), 2) +
pow(transform.getOrigin().y(), 2));
// 发布速度命令
turtle_vel.publish(vel_msg);
rate.sleep();
}
return 0;
}
CMakeLists.txt
cmake_minimum_required(VERSION 2.8.3)
project(tf_tutorials)
find_package(catkin REQUIRED COMPONENTS
roscpp
rospy
tf
turtlesim
)
catkin_package()
include_directories(
# include
${catkin_INCLUDE_DIRS}
)
add_executable(turtle_tf_broadcaster src/turtle_tf_broadcaster.cpp)
target_link_libraries(turtle_tf_broadcaster ${catkin_LIBRARIES})
add_executable(turtle_tf_listener src/turtle_tf_listener.cpp)
target_link_libraries(turtle_tf_listener ${catkin_LIBRARIES})
start_demo.launch
<launch>
<!-- Turtlesim Node 小乌龟1-->
<node pkg="turtlesim" type="turtlesim_node" name="sim"/>
<!-- 小乌龟1 键盘控制 -->
<node pkg="turtlesim" type="turtle_teleop_key" name="teleop" output="screen"/>
<!-- Axes -->
<param name="scale_linear" value="2" type="double"/>
<param name="scale_angular" value="2" type="double"/>
<!-- 发布 小乌龟1 位姿 ->
<node pkg="tf_tutorials" type="turtle_tf_broadcaster"
args="/turtle1" name="turtle1_tf_broadcaster" />
<!-- 发布 小乌龟2 位姿 ->
<node pkg="tf_tutorials" type="turtle_tf_broadcaster"
args="/turtle2" name="turtle2_tf_broadcaster" />
<!-- 监听两者位姿变换 让小乌龟2 追上 小乌龟1 ->
<node pkg="tf_tutorials" type="turtle_tf_listener"
name="listener" />
</launch>
#include <ros/ros.h>
#include <ros/console.h> // 控制台
#define OVERRIDE_NODE_VERBOSITY_LEVEL 0
int main( int argc, char **argv )
{
ros::init( argc, argv, "program1" );
#if OVERRIDE_NODE_VERBOSITY_LEVEL
/* Setting the logging level manually to DEBUG */
// 日志等级 Debug
ros::console::set_logger_level(ROSCONSOLE_DEFAULT_NAME, ros::console::levels::Debug);
#endif
ros::NodeHandle nh;
const double val = 3.14;
// ros 打印日志
ROS_DEBUG( "We are looking DEBUG message" );
ROS_DEBUG( "We are looking DEBUG message with an argument: %f", val );
ROS_DEBUG_STREAM("We are looking DEBUG stream message with an argument: " << val);
ros::spinOnce();
return EXIT_SUCCESS;
}
#include <ros/ros.h>
#include <ros/console.h>
int main( int argc, char **argv )
{
ros::init( argc, argv, "program2" );
ros::NodeHandle n;
const double val = 3.14;
/* Basic messages: 基本消息 */
ROS_INFO( "ROS INFO message." ); //
ROS_INFO( "ROS INFO message with argument: %f", val ); // 相当于c中的printf;
ROS_INFO_STREAM( "ROS INFO stream message with argument: " << val); // 相当于c++中的cout;
/* Named messages: 为调试信息命名 */
// 表示为这段信息命名,为了更容易知道这段信息来自那段代码.
ROS_INFO_STREAM_NAMED("named_msg","ROS named INFO stream message; val = " << val);
/* Conditional messages: 条件消息*/
ROS_INFO_STREAM_COND(val < 0., "ROS conditional INFO stream message; val (" << val << ") < 0");
ROS_INFO_STREAM_COND(val >= 0.,"ROS conditional INFO stream message; val (" << val << ") >= 0");
/* Conditional Named messages: 条件 名字消息*/
ROS_INFO_STREAM_COND_NAMED(val < 0., "cond_named_msg","ROS conditional INFO stream message; val (" << val << ") < 0");
ROS_INFO_STREAM_COND_NAMED(val >= 0., "cond_named_msg","ROS conditional INFO stream message; val (" << val << ") >= 0");
/* Filtered messages: 滤波消息*/
struct ROSLowerFilter : public ros::console::FilterBase
{
ROSLowerFilter( const double& val ) : value( val ) {}
inline virtual bool isEnabled()
{
return value < 0.;// 小于0
}
double value;
};
struct ROSGreaterEqualFilter : public ros::console::FilterBase
{
ROSGreaterEqualFilter( const double& val ) : value( val ) {}
inline virtual bool isEnabled()
{
return value >= 0.; // 大于0
}
double value;
};
ROSLowerFilter filter_lower(val);// 小于0的消息
ROSGreaterEqualFilter filter_greater_equal(val);// 大于0的消息
// 宏定义接口传入 过滤消息实例================
ROS_INFO_STREAM_FILTER(
&filter_lower,
"ROS filter INFO stream message; val (" << val << ") < 0"
);
ROS_INFO_STREAM_FILTER(
&filter_greater_equal,
"ROS filter INFO stream message; val (" << val << ") >= 0"
);
/* Once messages: 单次显示*/
for( int i = 0; i < 10; ++i ) {
// 在循环中让信息只输出一次
ROS_INFO_STREAM_ONCE(
"ROS once INFO stream message; i = " << i
);
}
/* Throttle messages: 设置显示频率 */
for( int i = 0; i < 10; ++i ) {
// THROTTLE表示节流的意思, 代码运行两次输出一次INFO throttle message.
ROS_INFO_STREAM_THROTTLE(
2,
"ROS throttle INFO stream message; i = " << i
);
ros::Duration(1).sleep();
}
ros::spinOnce();
return EXIT_SUCCESS;
}
#include <ros/ros.h>
#include <ros/console.h>
int main( int argc, char **argv )
{
ros::init( argc, argv, "program3" );
ros::NodeHandle nh;
ros::Rate rate(1);
while(ros::ok())
{
ROS_DEBUG_STREAM( "ROS DEBUG message."); // debug 等级消息
ROS_INFO_STREAM ( "ROS INFO message."); // info 普通正常消息
ROS_WARN_STREAM ( "ROS WARN message." ); // warn 警告消息
ROS_ERROR_STREAM( "ROS ERROR message." ); // error 错误消息
ROS_FATAL_STREAM( "ROS FATAL message." ); // fatal 验证错误消息
ROS_INFO_STREAM_NAMED( "named_msg", "ROS INFO named message." );// 名字消息
ROS_INFO_STREAM_THROTTLE(2, "ROS INFO Throttle message." ); // 频率消息
ros::spinOnce();
rate.sleep();
}
return EXIT_SUCCESS;
}
#include <ros/ros.h>
#include <ros/console.h>
#include <std_msgs/Int32.h>
#include <geometry_msgs/Vector3.h>
#include <chapter4_tutorials/SetSpeed.h> // 自定义服务消息类型
// srv/SetSpeed.srv-----------
// float32 desired_speed // 请求,期望速度
// ---
// float32 previous_speed // 反馈,上一次的速度
// float32 current_speed // 当前速度
// bool stalled // 设置完成标志
int main( int argc, char **argv )
{
ros::init( argc, argv, "program4" );
ros::NodeHandle nh;
// 发布温度数据
ros::Publisher pub_temp = nh.advertise< std_msgs::Int32 >( "temperature", 1000 );// 普通整形数据话题,温度数据
// 发布加速度消息 1*3 向量
ros::Publisher pub_accel = nh.advertise< geometry_msgs::Vector3 >( "acceleration", 1000 );
// 服务客户端,请求服务,获取服务,消费者
ros::ServiceClient srv_speed = nh.serviceClient< chapter4_tutorials::SetSpeed>( "speed" );
std_msgs::Int32 msg_temp;// 温度数据
geometry_msgs::Vector3 msg_accel;// 三轴加速度消息
chapter4_tutorials::SetSpeed msg_speed;// 服务消息
int i = 0;
ros::Rate rate( 1 );// 频率为1
while( ros::ok() )
{
msg_temp.data = i;// 温度数据======
msg_accel.x = 0.1 * i;// 三轴加速度消息=====
msg_accel.y = 0.2 * i;
msg_accel.z = 0.3 * i;
// 服务数据,设置 期望值,消费者提出的服务标准====
msg_speed.request.desired_speed = 0.01 * i;// 期望速度===
pub_temp.publish( msg_temp );// 发布温度数据
pub_accel.publish( msg_accel );// 发布加速度消息
// 服务消费者,调用服务,享受服务===
if( srv_speed.call( msg_speed ) )// 服务数据中携带,服务反馈值
{
// 日志消息打印,服务数据反馈值========================
ROS_INFO_STREAM(
"SetSpeed response:\n" <<
"Previous speed = " << msg_speed.response.previous_speed << "\n" <<
"Current speed = " << msg_speed.response.current_speed << "\n" <<
"Motor stalled = " << (msg_speed.response.stalled ? "true" : "false" )
);
}
else
{
/* Note that this might happen at the beginning, because
the service server could have not started yet! */
// 暂时无服务,获取服务提供错误
ROS_ERROR_STREAM( "Call to speed service failed!" );
}
++i;
ros::spinOnce();
rate.sleep();
}
return EXIT_SUCCESS;
}
#include <ros/ros.h>
#include <ros/console.h>
#include <std_msgs/Int32.h>
#include <geometry_msgs/Vector3.h>
#include <chapter4_tutorials/SetSpeed.h>
// 全局变量,记录前后两次的速度=====
float previous_speed = 0.;
float current_speed = 0.;
// 订阅 温度数据话题,回调函数
void callback_temperature( const std_msgs::Int32::ConstPtr& msg )
{
// 日志打印收到的消息
ROS_INFO_STREAM( "Temperature = " << msg->data );
}
// 订阅加速度数据话题,回调函数
void callback_acceleration( const geometry_msgs::Vector3::ConstPtr& msg )
{
// 日志打印收到的消息
ROS_INFO_STREAM("Acceleration = (" << msg->x << ", " << msg->y << ", " << msg->z << ")");
}
// 话题数据======是生产者主导==============被动消费=====容易爆仓========生产导向=================
// 服务话题回调函数=====消费者主导==========主动消费=====主动权在手=====顾客是上帝=====需求导向====
bool callback_speed(chapter4_tutorials::SetSpeed::Request &req, // 服务请求,消费者主动发来的
chapter4_tutorials::SetSpeed::Response &res) // 服务反馈,提供者,完成服务后的反馈信息
{
// 打印 服务客户端发来的 服务请求,服务要求,期望速度
ROS_INFO_STREAM("Speed service request: desired speed = " << req.desired_speed);
current_speed = 0.9 * req.desired_speed;// 当前速度,仿真
res.previous_speed = previous_speed;
res.current_speed = current_speed;
res.stalled = current_speed < 0.1;
previous_speed = current_speed;// 迭代======
return true;
}
int main( int argc, char **argv )
{
ros::init( argc, argv, "program5" );
ros::NodeHandle nh;
// 订阅话题,直接购买商品,有多少我要多少=====土豪脸.jpg
// 温度数据 话题
ros::Subscriber sub_temp = nh.subscribe( "temperature", 1000, callback_temperature);
// 加速度数据话题
ros::Subscriber sub_accel = nh.subscribe( "acceleration", 1000, callback_acceleration);
// 发布服务,广播消息,打广告,请把需求砸过来!!!!!!! 可爱脸.jpg
ros::ServiceServer srv_speed = nh.advertiseService( "speed", callback_speed );
ros::spin();
return EXIT_SUCCESS;
}
#include <ros/ros.h>
#include <dynamic_reconfigure/server.h>
#include <chapter4_tutorials/DynamicParamConfig.h>// 自定义 参数
// cfg/DynamicParam.cfg-----------------------
/*
# coding: utf-8
#!/usr/bin/env python
PACKAGE='chapter4_tutorials' # 包名
from math import pi
from dynamic_reconfigure.parameter_generator_catkin import *
from dynamic_reconfigure.msg import SensorLevels
gen = ParameterGenerator() # 参数生成
gen.add('BOOL', bool_t, SensorLevels.RECONFIGURE_RUNNING,
'Bool param', True)
gen.add('INT', int_t, SensorLevels.RECONFIGURE_STOP,
'Int param', 0, -10, 10)
gen.add('DOUBLE', double_t, SensorLevels.RECONFIGURE_CLOSE,
'Double param', 0.0, -pi, pi)
# 常量
foo = gen.const('ros', str_t, 'Ros', 'ROS')
bar = gen.const('cook', str_t, 'Cook', 'COOK')
baz = gen.const('book', str_t, 'Book', 'BOOK')
# 枚举变量
strings = gen.enum([foo, bar, baz], 'Strings')
# 添加自定义的枚举变量
gen.add('STRING', str_t, SensorLevels.RECONFIGURE_RUNNING,
'String param', 'Ros', edit_method = strings)
# 生成消息 头文件
exit(gen.generate(PACKAGE, PACKAGE, 'DynamicParam'))
*/
// ------------------------------------
// 动态参数服务器
class DynamicParamServer
{
public:
DynamicParamServer()
{
// 动态参数配置服务器设置,参数改变后响应的 回调函数
_cfg_server.setCallback(boost::bind(&DynamicParamServer::callback, this, _1, _2));
}
void callback(chapter4_tutorials::DynamicParamConfig& config, uint32_t level)
{
// 打印动态配置后的参数
ROS_INFO_STREAM(
"New configuration received with level = " << level << ":\n" <<
"BOOL = " << config.BOOL << "\n" <<
"INT = " << config.INT<< "\n" <<
"DOUBLE = " << config.DOUBLE << "\n" <<
"STRING = " << config.STRING
);
}
private:
// 接收 参数类型后实例化的 动态参数配置服务器对象
dynamic_reconfigure::Server<chapter4_tutorials::DynamicParamConfig> _cfg_server;
};
int main(int argc, char** argv)
{
ros::init(argc, argv, "program6");
DynamicParamServer dps;// 定义参数服务器类,修改参数后,回调函数会指定执行
while(ros::ok())
{
ros::spin();
}
return EXIT_SUCCESS;
}
diagnostic_updater/diagnostic_updater.h 诊断???
#include <ros/ros.h>
#include <image_transport/image_transport.h> // 图像发送
#include <cv_bridge/cv_bridge.h>// opencv 图像 转换成 ros图像
#include <sensor_msgs/image_encodings.h> // 图像编码
#include <opencv2/highgui/highgui.hpp>// opencvgui
int main( int argc, char **argv )
{
ros::init( argc, argv, "program8" );
ros::NodeHandle nh;
/*Open camera with CAMERA_INDEX (webcam is typically #0).*/
const int CAMERA_INDEX = 0; // 摄像头id
cv::VideoCapture capture( CAMERA_INDEX );// opencv打开相机
if(not capture.isOpened() )
{// 打开相机发生错误
ROS_ERROR_STREAM("Failed to open camera with index " << CAMERA_INDEX << "!");
ros::shutdown();
}
// 图像信息发送器
image_transport::ImageTransport it(nh);
// 发布图像消息
image_transport::Publisher pub_image = it.advertise( "camera", 1 );
// opencv 图像 带 时间戳
cv_bridge::CvImagePtr frame = boost::make_shared< cv_bridge::CvImage >();
frame->encoding = sensor_msgs::image_encodings::BGR8;
while( ros::ok() ) {
capture >> frame->image;// 图像域
if( frame->image.empty() )
{
ROS_ERROR_STREAM( "Failed to capture frame!" );
ros::shutdown();
}
frame->header.stamp = ros::Time::now();// 时间戳
pub_image.publish( frame->toImageMsg() );// 转换成 ros图像消息后发布出去====
cv::waitKey( 3 );
ros::spinOnce();
}
capture.release();// 释放相机=======
return EXIT_SUCCESS;
}
#include <ros/ros.h>
#include <visualization_msgs/Marker.h> // rviz可视化图像/marker
#include <sensor_msgs/PointCloud2.h> // 点云消息
#include <pcl_conversions/pcl_conversions.h> // pcl类型转换成 rospcl类型
#include <pcl/point_cloud.h>// 点云
#include <pcl/point_types.h>// 点类型
int main( int argc, char **argv )
{
ros::init( argc, argv, "program9" );
ros::NodeHandle n;
// 发布marker消息
ros::Publisher pub_marker = n.advertise< visualization_msgs::Marker >( "marker", 1000 );
// 发布点云消息
ros::Publisher pub_pc = n.advertise< sensor_msgs::PointCloud2 >( "pc", 1000 );
// 可视化marker消息----------------------------------------------------
visualization_msgs::Marker msg_marker;
msg_marker.header.frame_id = "/frame_world"; // 消息头,坐标系id
msg_marker.ns = "shapes"; // 所属命名空间
msg_marker.id = 0; // id
msg_marker.type = visualization_msgs::Marker::CUBE; // 形状类型,正方体
msg_marker.action = visualization_msgs::Marker::ADD; // 叠加
msg_marker.pose.position.x = 0.;// 位置
msg_marker.pose.position.y = 1.;
msg_marker.pose.position.z = 2.;
msg_marker.pose.orientation.x = 0.;// 姿态 四元素类型
msg_marker.pose.orientation.y = 0.;
msg_marker.pose.orientation.z = 0.;
msg_marker.pose.orientation.w = 1.;
msg_marker.scale.x = 1.;// 尺寸
msg_marker.scale.y = 1.;
msg_marker.scale.z = 1.;
msg_marker.color.r = 1.; // 颜色
msg_marker.color.g = 0.;
msg_marker.color.b = 0.;
msg_marker.color.a = 1.; // 透明度,不透明
msg_marker.lifetime = ros::Duration();// 声生命周期
ROS_INFO_STREAM( "Marker Created." );
// 点云消息--------------------------------------------
sensor_msgs::PointCloud2 msg_pc;// rospcl 类型
pcl::PointCloud< pcl::PointXYZ > pc;// pcl XYZ类型点云
pc.width = 300;
pc.height = 200; // 有序点云
pc.is_dense = false;// 有nan点
pc.points.resize( pc.width * pc.height );
// 随机生成假的点云数据
for( size_t i = 0; i < pc.height; ++i ) {
for( size_t j = 0; j < pc.width; ++j ) {
const size_t k = pc.width * i + j;
pc.points[k].x = 0.1 * i;
pc.points[k].y = 0.2 * j;
pc.points[k].z = 1.5;
}
}
ROS_INFO_STREAM( "Point Cloud Created." );
ros::Rate rate( 1 );
while( ros::ok() )
{
msg_marker.header.stamp = ros::Time::now(); // marker时间戳
msg_marker.pose.position.x += 0.01; // 位置在移动
msg_marker.pose.position.y += 0.02;
msg_marker.pose.position.z += 0.03;
for( size_t i = 0; i < pc.height; ++i ) {
for( size_t j = 0; j < pc.width; ++j ) {
const size_t k = pc.width * i + j;
pc.points[k].z -= 0.1; // z方向位置在移动
}
}
pcl::toROSMsg( pc, msg_pc );// pcl点云类型 转换成 rospcl类型
msg_pc.header.stamp = msg_marker.header.stamp;// 时间戳
msg_pc.header.frame_id = "/frame_robot";// 坐标系
pub_marker.publish( msg_marker );// 发布marker
pub_pc.publish( msg_pc ); // 发布 点云
ros::spinOnce();
rate.sleep();
}
return EXIT_SUCCESS;
}
#include <ros/ros.h>
#include <tf/tf.h>
#include <interactive_markers/interactive_marker_server.h> // 交互式marker 可以响应鼠标
// 有交互后的回调函数----------------------------------------------------------------------------
void feedback_callback(const visualization_msgs::InteractiveMarkerFeedbackConstPtr &feedback)
{
double roll, pitch, yaw;
tf::Quaternion q;
tf::quaternionMsgToTF(feedback->pose.orientation, q);// 获取四元素姿态
tf::Matrix3x3(q).getRPY(roll, pitch, yaw);// 对应的姿态向量
// 打印marker的位置 和 姿态
ROS_INFO_STREAM(
feedback->marker_name << "position (x, y, z) = (" <<
feedback->pose.position.x << ", " <<
feedback->pose.position.y << ", " <<
feedback->pose.position.z << "), orientation (roll, pitch, yaw) = (" <<
roll << ", " << pitch << ", " << yaw << ")"
);
}
int main( int argc, char** argv )
{
ros::init(argc, argv, "program10");
// 交互式marker服务器
interactive_markers::InteractiveMarkerServer server("marker");
visualization_msgs::InteractiveMarker marker;// 交互式marker 类型
marker.header.frame_id = "base_link";// 头,坐标系
marker.name = "marker";// 名字
marker.description = "2-DOF Control";// 自我介绍
/* Box marker */
visualization_msgs::Marker box_marker;
box_marker.type = visualization_msgs::Marker::CUBE; // 正方体
box_marker.scale.x = 0.5;// 尺寸
box_marker.scale.y = 0.5;
box_marker.scale.z = 0.5;
box_marker.color.r = 0.5;// 颜色
box_marker.color.g = 0.5;
box_marker.color.b = 0.5;
box_marker.color.a = 1.0;
/* Non-interactive control which contains the box */
visualization_msgs::InteractiveMarkerControl box_control;// 交互式marker控制
box_control.always_visible = true;// 一直显示
box_control.markers.push_back(box_marker);// 设置控制对象
/* Controls to move the box */
visualization_msgs::InteractiveMarkerControl move_x_control, rotate_z_control;
move_x_control.name = "move_x";
move_x_control.interaction_mode = visualization_msgs::InteractiveMarkerControl::MOVE_AXIS;// 沿轴方向移动
rotate_z_control.name = "rotate_z";
rotate_z_control.orientation.w = 1;
rotate_z_control.orientation.y = 1;
rotate_z_control.interaction_mode = visualization_msgs::InteractiveMarkerControl::ROTATE_AXIS;// 沿轴方向旋转
// 交互式marker设置可 交互方式
marker.controls.push_back(box_control);
marker.controls.push_back(move_x_control);
marker.controls.push_back(rotate_z_control);
// 交互式marker服务器吗,设置携带交互方式的 交互式marker
server.insert(marker, &feedback_callback);
server.applyChanges();
ros::spin();
}
CMakeLists.txt
cmake_minimum_required(VERSION 2.8.3)
project(chapter4_tutorials)
set(ROS_BUILD_TYPE Debug) # 编译模式
# 找到依赖包
find_package(catkin REQUIRED
COMPONENTS
roscpp
message_generation
std_msgs
geometry_msgs
sensor_msgs
visualization_msgs
dynamic_reconfigure
diagnostic_updater
cv_bridge
image_transport
pcl_conversions
interactive_markers)
# 找依赖库
find_package(OpenCV)
find_package(PCL REQUIRED)
# 自定义服务类型
add_service_files(FILES SetSpeed.srv)
# 生成服务类型 的 头文件
generate_messages(DEPENDENCIES std_msgs)
# 生成动态参数配置参数 的头文件
generate_dynamic_reconfigure_options(cfg/DynamicParam.cfg)
# 设置包
catkin_package(
CATKIN_DEPENDS
roscpp
message_runtime
std_msgs
geometry_msgs
sensor_msgs
visualization_msgs
dynamic_reconfigure
diagnostic_updater
cv_bridge
image_transport
pcl_conversions
interactive_markers)
# 添加依赖库
include_directories(
${catkin_INCLUDE_DIRS}
${OpenCV_INCLUDE_DIRS}
${PCL_INCLUDE_DIRS})
# 编译
add_executable(program1 src/program1.cpp)
target_link_libraries(program1 ${catkin_LIBRARIES})
add_executable(program1_dump src/program1_dump.cpp)
target_link_libraries(program1_dump ${catkin_LIBRARIES})
add_executable(program1_mem src/program1_mem.cpp)
target_link_libraries(program1_mem ${catkin_LIBRARIES})
add_executable(program2 src/program2.cpp)
target_link_libraries(program2 ${catkin_LIBRARIES})
add_executable(program3 src/program3.cpp)
target_link_libraries(program3 ${catkin_LIBRARIES})
add_executable(program4 src/program4.cpp)
add_dependencies(program4 ${PROJECT_NAME}_generate_messages_cpp)
target_link_libraries(program4 ${catkin_LIBRARIES})
add_executable(program5 src/program5.cpp)
add_dependencies(program5 ${PROJECT_NAME}_generate_messages_cpp)
target_link_libraries(program5 ${catkin_LIBRARIES})
add_executable(program6 src/program6.cpp)
add_dependencies(program6 ${PROJECT_NAME}_gencfg)
target_link_libraries(program6 ${catkin_LIBRARIES})
add_executable(program7 src/program7.cpp)
target_link_libraries(program7 ${catkin_LIBRARIES})
add_executable(program8 src/program8.cpp)
target_link_libraries(program8 ${catkin_LIBRARIES} ${OpenCV_LIBRARIES})
add_executable(program9 src/program9.cpp)
target_link_libraries(program9 ${catkin_LIBRARIES} ${PCL_LIBRARIES})
add_executable(program10 src/program10.cpp)
target_link_libraries(program10 ${catkin_LIBRARIES})
#include <ros/ros.h>
#include <sensor_msgs/LaserScan.h> // 雷达扫描数据
int main(int argc, char** argv)
{
ros::init(argc, argv, "laser_scan_publisher");
ros::NodeHandle n;
// 话题 发布 雷达扫描数据
ros::Publisher scan_pub = n.advertise<sensor_msgs::LaserScan>("scan", 50);
unsigned int num_readings = 100; // 一周数据点??
double laser_frequency = 40; // 频率
double ranges[num_readings]; // 范围
double intensities[num_readings]; // 密度
int count = 0;
ros::Rate r(1.0);
while(n.ok()){
// 生成假的雷达数据=============
for(unsigned int i = 0; i < num_readings; ++i)
{
ranges[i] = count; // 距离数据
intensities[i] = 100 + count; // 密度数据,反射强度??
}
// 准备雷达数据=========================
ros::Time scan_time = ros::Time::now();
sensor_msgs::LaserScan scan;// 定义雷达数据
scan.header.stamp = scan_time;// 时间戳
scan.header.frame_id = "base_link";// 坐标系
scan.angle_min = -1.57; // 扫描最小角度 -90度
scan.angle_max = 1.57; // 扫描最大角度 +90度
scan.angle_increment = 3.14 / num_readings; // 180度 100个数据,角度分辨率
scan.time_increment = (1 / laser_frequency) / (num_readings);// 每一个扫描需要的时间,时间增量
scan.range_min = 0.0; // 数据范围
scan.range_max = 100.0;
scan.ranges.resize(num_readings); // 距离范围数据
scan.intensities.resize(num_readings);// 强度数据??
for(unsigned int i = 0; i < num_readings; ++i)
{
// 填充距离数据 和 强度数据
scan.ranges[i] = ranges[i];
scan.intensities[i] = intensities[i];
}
// 发布雷达数据
scan_pub.publish(scan);
++count;
r.sleep();
}
}
#include <string>
#include <ros/ros.h>
#include <sensor_msgs/JointState.h> // 关节状态??
#include <tf/transform_broadcaster.h> // 左边变换 广播
#include <nav_msgs/Odometry.h> // 导航下的里程计消息
int main(int argc, char** argv)
{
ros::init(argc, argv, "state_publisher");
ros::NodeHandle n;
// 发布里程计消息
ros::Publisher odom_pub = n.advertise<nav_msgs::Odometry>("odom", 10);
// 初始2d位姿
double x = 0.0;
double y = 0.0;
double th = 0;
// 速度 velocity
double vx = 0.4; // 前进线速度
double vy = 0.0;
double vth = 0.4;// 旋转角速度
ros::Time current_time;
ros::Time last_time;
current_time = ros::Time::now();// 当前时间
last_time = ros::Time::now(); // 上次时间
tf::TransformBroadcaster broadcaster; // 位姿 广播
ros::Rate loop_rate(20);// 频率
const double degree = M_PI/180; // 度转 弧度
// message declarations
geometry_msgs::TransformStamped odom_trans; // 坐标变换消息
odom_trans.header.frame_id = "odom";
odom_trans.child_frame_id = "base_footprint";
while (ros::ok()) {
current_time = ros::Time::now(); // 当前时间
double dt = (current_time - last_time).toSec();// 两次时间差
double delta_x = (vx * cos(th) - vy * sin(th)) * dt;
double delta_y = (vx * sin(th) + vy * cos(th)) * dt;
double delta_th = vth * dt;
// \vy y /vx
// \ | /
// \ |/
// -------x-------
//
x += delta_x;
y += delta_y;
th += delta_th;
geometry_msgs::Quaternion odom_quat;// 四元素位姿
odom_quat = tf::createQuaternionMsgFromRollPitchYaw(0,0,th);// rpy转换到 四元素
// 更新左边变换消息,tf广播发布==================
odom_trans.header.stamp = current_time; // 当前时间
odom_trans.transform.translation.x = x; // 位置
odom_trans.transform.translation.y = y;
odom_trans.transform.translation.z = 0.0;
odom_trans.transform.rotation = tf::createQuaternionMsgFromYaw(th);// 位姿
// 更新 里程计消息
nav_msgs::Odometry odom;// 里程计消息
odom.header.stamp = current_time;// 当前时间
odom.header.frame_id = "odom";
odom.child_frame_id = "base_footprint";
// 位置 position
odom.pose.pose.position.x = x;
odom.pose.pose.position.y = y;
odom.pose.pose.position.z = 0.0;
odom.pose.pose.orientation = odom_quat; // 位姿
// 速度 velocity
odom.twist.twist.linear.x = vx;// 线速度
odom.twist.twist.linear.y = vy;
odom.twist.twist.linear.z = 0.0;
odom.twist.twist.angular.x = 0.0; // 小速度
odom.twist.twist.angular.y = 0.0;
odom.twist.twist.angular.z = vth;
last_time = current_time;// 迭代消息
// publishing the odometry and the new tf
broadcaster.sendTransform(odom_trans);// 发布坐标变换消息 =====
odom_pub.publish(odom);// 发布里程计消息====
loop_rate.sleep();
}
return 0;
}
#include <ros/ros.h>
#include <move_base_msgs/MoveBaseAction.h> // 移动底盘 action消息
#include <actionlib/client/simple_action_client.h>// action 客户端,发布目标
#include <tf/transform_broadcaster.h>// 坐标变换广播
#include <sstream>
// action 客户端==========
typedef actionlib::SimpleActionClient<move_base_msgs::MoveBaseAction> MoveBaseClient;
int main(int argc, char** argv)
{
ros::init(argc, argv, "navigation_goals");
// action 客户端
MoveBaseClient ac("move_base", true);
// 等待action服务 启动
while(!ac.waitForServer(ros::Duration(5.0)))
{
ROS_INFO("Waiting for the move_base action server");
}
// action 目标信息 目标位置
move_base_msgs::MoveBaseGoal goal;
goal.target_pose.header.frame_id = "map";// 坐标系
goal.target_pose.header.stamp = ros::Time::now();// 时间戳
goal.target_pose.pose.position.x = 1.0;// 目标位置
goal.target_pose.pose.position.y = 1.0;
goal.target_pose.pose.orientation.w = 1.0;// 姿态
ROS_INFO("Sending goal");
ac.sendGoal(goal);// 发送 action 目标
ac.waitForResult(); // 等待 action服务端 完成action
if(ac.getState() == actionlib::SimpleClientGoalState::SUCCEEDED)
ROS_INFO("You have arrived to the goal position");
else{
ROS_INFO("The base failed for some reason");
}
return 0;
}