Skip to content

Commit

Permalink
Include n_gram_range examples
Browse files Browse the repository at this point in the history
  • Loading branch information
MaartenGr authored Dec 7, 2020
1 parent 60bf9e5 commit a767327
Showing 1 changed file with 5 additions and 5 deletions.
10 changes: 5 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ keywords = model.extract_keywords(doc)
You can set `keyphrase_length` to set the length of the resulting keywords/keyphrases:

```python
>>> model.extract_keywords(doc, keyphrase_length=1, stop_words=None)
>>> model.extract_keywords(doc, keyphrase_ngram_range=(1, 1), stop_words=None)
['learning',
'training',
'algorithm',
Expand All @@ -105,7 +105,7 @@ To extract keyphrases, simply set `keyphrase_length` to 2 or higher depending on
of words you would like in the resulting keyphrases:

```python
>>> model.extract_keywords(doc, keyphrase_length=2, stop_words=None)
>>> model.extract_keywords(doc, keyphrase_ngram_range=(1, 2), stop_words=None)
['learning algorithm',
'learning machine',
'machine learning',
Expand All @@ -126,7 +126,7 @@ Then, we take all top_n combinations from the 2 x top_n words and extract the co
that are the least similar to each other by cosine similarity.

```python
>>> model.extract_keywords(doc, keyphrase_length=3, stop_words='english',
>>> model.extract_keywords(doc, keyphrase_ngram_range=(3, 3), stop_words='english',
use_maxsum=True, nr_candidates=20, top_n=5)
['set training examples',
'generalize training data',
Expand All @@ -144,7 +144,7 @@ keywords / keyphrases which is also based on cosine similarity. The results
with **high diversity**:

```python
>>> model.extract_keywords(doc, keyphrase_length=3, stop_words='english', use_mmr=True, diversity=0.7)
>>> model.extract_keywords(doc, keyphrase_ngram_range=(3, 3), stop_words='english', use_mmr=True, diversity=0.7)
['algorithm generalize training',
'labels unseen instances',
'new examples optimal',
Expand All @@ -155,7 +155,7 @@ with **high diversity**:
The results with **low diversity**:

```python
>>> model.extract_keywords(doc, keyphrase_length=3, stop_words='english', use_mmr=True, diversity=0.2)
>>> model.extract_keywords(doc, keyphrase_ngram_range=(3, 3), stop_words='english', use_mmr=True, diversity=0.2)
['algorithm generalize training',
'learning machine learning',
'learning algorithm analyzes',
Expand Down

0 comments on commit a767327

Please sign in to comment.