-
Notifications
You must be signed in to change notification settings - Fork 26
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
50d40ec
commit ead038b
Showing
4 changed files
with
183 additions
and
14 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,165 @@ | ||
from tqdm import tqdm | ||
from torch.utils.data import DataLoader | ||
import torch.nn as nn | ||
import pytest | ||
import logging | ||
|
||
from trak import TRAKer | ||
|
||
from datasets import load_dataset | ||
from transformers import ( | ||
AutoConfig, | ||
AutoModelForSequenceClassification, | ||
AutoTokenizer, | ||
default_data_collator, | ||
) | ||
|
||
|
||
GLUE_TASK_TO_KEYS = { | ||
"cola": ("sentence", None), | ||
"mnli": ("premise", "hypothesis"), | ||
"mrpc": ("sentence1", "sentence2"), | ||
"qnli": ("question", "sentence"), | ||
"qqp": ("question1", "question2"), | ||
"rte": ("sentence1", "sentence2"), | ||
"sst2": ("sentence", None), | ||
"stsb": ("sentence1", "sentence2"), | ||
"wnli": ("sentence1", "sentence2"), | ||
} | ||
|
||
# for testing purposes | ||
TRAIN_SET_SIZE = 20 | ||
VAL_SET_SIZE = 10 | ||
|
||
|
||
class SequenceClassificationModel(nn.Module): | ||
""" | ||
Wrapper for HuggingFace sequence classification models. | ||
""" | ||
def __init__(self): | ||
super().__init__() | ||
self.config = AutoConfig.from_pretrained( | ||
'bert-base-cased', | ||
num_labels=2, | ||
finetuning_task='qnli', | ||
cache_dir=None, | ||
revision='main', | ||
use_auth_token=None, | ||
) | ||
|
||
self.model = AutoModelForSequenceClassification.from_pretrained( | ||
'bert-base-cased', | ||
config=self.config, | ||
cache_dir=None, | ||
revision='main', | ||
use_auth_token=None, | ||
ignore_mismatched_sizes=False | ||
) | ||
|
||
self.model.eval().cuda() | ||
|
||
def forward(self, input_ids, token_type_ids, attention_mask): | ||
return self.model(input_ids=input_ids, | ||
token_type_ids=token_type_ids, | ||
attention_mask=attention_mask).logits | ||
|
||
|
||
def get_dataset(split, inds=None): | ||
raw_datasets = load_dataset( | ||
"glue", | ||
'qnli', | ||
cache_dir=None, | ||
use_auth_token=None, | ||
) | ||
sentence1_key, sentence2_key = GLUE_TASK_TO_KEYS['qnli'] | ||
|
||
tokenizer = AutoTokenizer.from_pretrained( | ||
'bert-base-cased', | ||
cache_dir=None, | ||
use_fast=True, | ||
revision='main', | ||
use_auth_token=False | ||
) | ||
|
||
padding = "max_length" | ||
max_seq_length = 128 | ||
|
||
def preprocess_function(examples): | ||
# Tokenize the texts | ||
args = ( | ||
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key]) | ||
) | ||
result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True) | ||
|
||
return result | ||
|
||
raw_datasets = raw_datasets.map( | ||
preprocess_function, | ||
batched=True, | ||
load_from_cache_file=(not False), | ||
desc="Running tokenizer on dataset", | ||
) | ||
|
||
if split == 'train': | ||
train_dataset = raw_datasets["train"] | ||
ds = train_dataset | ||
else: | ||
eval_dataset = raw_datasets["validation"] | ||
ds = eval_dataset | ||
return ds | ||
|
||
|
||
def init_loaders(batch_size=10): | ||
ds_train = get_dataset('train') | ||
ds_train = ds_train.select(range(TRAIN_SET_SIZE)) | ||
ds_val = get_dataset('val') | ||
ds_val = ds_val.select(range(VAL_SET_SIZE)) | ||
return DataLoader(ds_train, batch_size=batch_size, shuffle=False, collate_fn=default_data_collator), \ | ||
DataLoader(ds_val, batch_size=batch_size, shuffle=False, collate_fn=default_data_collator) | ||
|
||
|
||
def process_batch(batch): | ||
return batch['input_ids'], batch['token_type_ids'], batch['attention_mask'], batch['labels'] | ||
|
||
|
||
# model too large to test on CPU | ||
@pytest.mark.cuda | ||
def test_qnli(tmp_path, device='cuda'): | ||
loader_train, loader_val = init_loaders() | ||
|
||
# no need to load model from checkpoint, just testing featurization and scoring | ||
model = SequenceClassificationModel() | ||
|
||
logger = logging.getLogger('QNLI') | ||
logger.setLevel(logging.DEBUG) | ||
logger.info(f'Initializing TRAKer with device {device}') | ||
|
||
traker = TRAKer(model=model, | ||
task='text_classification', | ||
train_set_size=TRAIN_SET_SIZE, | ||
save_dir=tmp_path, | ||
device=device, | ||
logging_level=logging.DEBUG, | ||
proj_dim=512) | ||
|
||
logger.info('Loading checkpoint') | ||
traker.load_checkpoint(model.state_dict(), model_id=0) | ||
logger.info('Loaded checkpoint') | ||
for batch in tqdm(loader_train, desc='Featurizing..'): | ||
# process batch into compatible form for TRAKer TextClassificationModelOutput | ||
batch = process_batch(batch) | ||
batch = [x.to(device) for x in batch] | ||
traker.featurize(batch=batch, num_samples=batch[0].shape[0]) | ||
|
||
traker.finalize_features() | ||
|
||
traker.start_scoring_checkpoint(exp_name='qnli', | ||
checkpoint=model.state_dict(), | ||
model_id=0, | ||
num_targets=VAL_SET_SIZE) | ||
for batch in tqdm(loader_val, desc='Scoring..'): | ||
batch = process_batch(batch) | ||
batch = [x.to(device) for x in batch] | ||
traker.score(batch=batch, num_samples=batch[0].shape[0]) | ||
|
||
traker.finalize_scores(exp_name='qnli') |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters