Utilizing Temporal Information in Deep Convolutional Network for Efficient Soccer Ball Detection and Tracking
prepare datasets
python prepare_dataset.py
to reproduce best numbers
python test.py --reproduce=best
to reproduce all numbers
python test.py --reproduce=all
to evaluate on new data only to get output detection of the swetynet
python test.py --dataset=new_sweaty --data_root=/root_folder_of_dataset/
to evaluate on new sequence of data
python test.py --dataset=new_seq --data_root=/root_folder_of_dataset/
structure for the new data should be like in testDataset where each line of the ball.txt is relative path to the image, y center position, x center position, y resolution of image, x resolutionn of image
the result output of the network you can find in the folder 'seq_output'. The target heatmaps on the visualization consist of only zeros due to the implementation of the dataset. Make sure that the number of images in the new dataset is more than 20 if you use --dataset=new_seq.
py_models/joined_model.py
py_models/lstm.py
py_models/tcn_ed.py
py_train/evaluator.py
py_dataset/seq_dataset.py
arguments.py
@inproceedings{schnekenburger2017detection,
title={Detection and Localization of Features on a Soccer Field with Feedforward Fully Convolutional Neural Networks (FCNN) for the Adult-Size Humanoid Robot Sweaty},
author={Schnekenburger, Fabian and Scharffenberg, Manuel and W{\"u}lker, Michael and Hochberg, Ulrich and Dorer, Klaus},
booktitle={Proceedings of the 12th Workshop on Humanoid Soccer Robots, IEEE-RAS International Conference on Humanoid Robots, Birmingham},
year={2017}
}