Skip to content

A TensorFlow (>=0.12.1) implementation of BRNN + CRF + Char-level embedding model for general sequence labeling, e.g., POS tagging, Named Entity Recognition, and Slot Tagging.

License

Notifications You must be signed in to change notification settings

MingjieQian/SequenceLabeling

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 

Repository files navigation

SequenceLabeling

A TensorFlow (>=0.12.1) implementation of BRNN + CRF + Char-level embedding model for general sequence labeling, e.g., POS tagging, Named Entity Recognition, and Slot Tagging.

Help

python SequenceLabelingBRNNCRF.py -h

Training

python SequenceLabelingBRNNCRF.py -T train -d data_dir -t training_filename -v dev_filename -p pretrained_word_embedding_path -C LSTM -e 300 -H 300 -k 0.5 -l 0.001 -b 20 -i 30 -c 1 --use_chars -E 100 --hidden_size_char 100 --decay 0.90 --fix_word_embedding --annotation_scheme CoNLL --brnn_type vanilla [--yield_data] yield_data here means that only a mini-batch data is yield from a dataset iterator, which is more memory efficient for large scale data.

Evaluation

python SequenceLabelingBRNNCRF.py -T eval --model_dir model_path --eval_filepath evaluation_filepath --annotation_scheme CoNLL

Prediction

python SequenceLabelingBRNNCRF.py -T predict --model_dir model_path --test_filepath test_filepath In test_filepath, each line is a sequence of tokens.

Interactive prediction

python SequenceLabelingBRNNCRF.py -T online --model_dir model_path

About

A TensorFlow (>=0.12.1) implementation of BRNN + CRF + Char-level embedding model for general sequence labeling, e.g., POS tagging, Named Entity Recognition, and Slot Tagging.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages