Skip to content

A lightweight SLAM loop detection library based on deep learning and sequence match

Notifications You must be signed in to change notification settings

Mingrui-Yu/Seq-CALC

Repository files navigation

Seq-CALC

Seq-CALC is a loop detection method for SLAM based on CALC with the help of sequence match. CALC is a convolutional auto-encoder loop detection model, which has shown competitive performance on both accuracy and time cost against DBoW2. Inspired with SeqSLAM, our Seq-CALC combines CALC with sequence match, greatly improving its accurary in complex environment. To ensure real-time, we reduce the dimension of the descriptor from 1064 to 128 using PCA, which leads to a very little accuracy loss but much faster query speed. We also do some further optimization for real-time online loop detection.

Here is a C++ library for online SLAM loop detection based on Seq-CALC. The pre-trained CALC model is provided by CALC and can be downloaded on compilation. Notice that now this library is totally designed for online SLAM loop detection, so if you want to use this method in pure place recogintion work, some modification is required.

Dependencies

Required:

  • OpenCV 3
  • Eigen
  • Boost filesystem
  • Caffe

Optional but HIGHLY Recommended:

  • CUDA

To Compile

$ mkdir build && cd build
$ cmake .. && make 

# Already set to Release build. Notice if you are using VSCode, you need to select CMake:Release manually 

Note that if your caffe is not installed in ~/caffe, you must use

$ cmake -DCaffe_ROOT_DIR=</path/to/caffe> .. && make

instead. Or you can change Caffe PATH in CMakeLists.txt.

Usage

There is a simple demo in demo/demo.cpp, which detects loops online in KITTI sequence (gray images). To run the demo, please execute the following command in SeqCALC folder:

./build/demo  PATH_TO_KITTI00_GRAY_DIR

For more functions you can refer to include/deeplcd/deeplcd.h.


This project is a part of my undergraduate thesis. More details of the method and library will be added after my defense.

About

A lightweight SLAM loop detection library based on deep learning and sequence match

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published