- Python 3.5
- PyTorch 1.0
- GPU (recommended)
- CIFAR-10/100: automatically downloaded by PyTorch scripts to
data
folder - ImageNet: manually downloaded from ImageNet (ILSVRC2012 version) and moved to
train
andval
folders in yourdataroot
path (e.g.,./imagenet/
)
Our script occupies all available GPUs. Please set environment CUDA_VISIBLE_DEVICES
.
with SICAP
python main.py --dataset cifar10 --model WideResNetDropout --depth 28 --params 10 --beta_of_sicap 1.0 --postfix sicap1.0
without SICAP
python main.py --dataset cifar10 --model WideResNetDropout --depth 28 --params 10
We trained these models on a single GPU (GeForce GTX 1080).
with SICAP
python main.py --dataset cifar100 --model WideResNetDropout --depth 28 --params 10 --beta_of_sicap 0.3 --postfix SICAP1.0
without SICAP
python main.py --dataset cifar100 --model WideResNetDropout --depth 28 --params 10
We trained these models on a single GPU (GeForce GTX 1080).
with SICAP
python main.py --dataset ImageNet --dataroot [your imagenet folder path(like ./imagenet)] --model WideResNetBottleneck --depth 50 --epoch 100 --adlr 30,60,90 --droplr 0.1 --wd 1e-4 --batch 256 --params 2 --beta_of_ricap 0.3 --postfix ricap0.3
without SICAP
python main.py --dataset ImageNet --dataroot [your imagenet folder path(like ./imagenet)] --model WideResNetBottleneck --depth 50 --epoch 100 --adlr 30,60,90 --droplr 0.1 --wd 1e-4 --batch 256 --params 2